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Abstract

Mathematicians and actuaries have been applying relatively simple mathematical formulae to model mor-

tality since de Moivre in 1725. Some of these “mortality laws” have stood the test of time and even today

allow mortality experience to be captured across a wide range of ages. In fact, in the United Kingdom stan-

dard mortality tables have long been graduated according to such laws. In this paper, a statistical modelling

framework from first principles is outlined that readily permits mortality laws to be fitted to mortality expe-

rience data. The dataset underlying the 2014 Canadian Pensioners’ Mortality study (CPM2014) is invoked

as a case study relevant to North American actuaries. Parametric mortality laws readily allow risk factors

to be incorporated that describe the mortality of different groups within the experience data in an intuitive

and precise manner. The practitioner can thus graduate mortality tables from heterogeneous datasets and

gain an understanding of the drivers of mortality. The incorporation of risk factors is explored in general,

and in particular in the context of reflecting amounts such as pensions-in-pay, annuity payments, policy face

amount, or other benefit amounts, which are financially significant. The concepts discussed in this paper

permit any actuary concerned with life contingencies to implement a statistical graduation framework in a

simple, accessible manner.

1 Introduction

Any mortality basis used in the valuation of employee pensions and other benefit plans or the pricing or

reserving of life insurance products is a model. It is a model whether calibrated directly to the experience

of the particular group of interest or to that of other relevant populations. A mortality model generally

comprises two main components: (1) the current (baseline) mortality, and (2) the improvement trend. This

paper is concernedwithmodelling the former, and its purpose is to provide practitioners access to simple but

powerful tools to graduate mortality tables and in the process discover more about the drivers of mortality.

As in any other modelling exercise, the best model for baseline mortality is the simplest that can pro-

duce predictions that are sufficiently accurate for the intended application. We therefore need to be able

to measure the quality and applicability of the model’s predictions. In addition, the model should be built

making as few assumptions about the outcome of the analysis as possible, with the impact of each decision

made along the way measured and documented. To ensure that no bias is introduced, the experience data

to which the model is fitted should not be adjusted, or any data discarded, without good cause.

In what follows, a framework is built up following these principles. Very few, if any, of the methods are

new or original, as the methodology explored is largely the same as that used by the Continuous Mortality

Investigation (CMI) in the United Kingdom in the graduation of their standard baseline tables for the past

thirty years. The majority of the CMI’s methodology is comprehensively documented in Forfar et al. (1988),

with other considerations explored over a number of CMI working papers (CMI WP), some of which are

referenced below.1

However, despite the prevalence of such statistical models in the United Kingdom, many practitioners in

Canada and the United States still gravitate to more traditional, restrictive approaches. The authors believe

that the application of statistical concepts to Canadian and American mortality experience will illustrate how

statistical methods can improve understanding of mortality.

The main focus of this paper is a method known as graduation by mathematical formula, where rela-

1With few exceptions, CMI outputs since March 2013 are available only to CMI subscribers and may not be distributed freely.

©2018 Society of Actuaries
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tively simple and intuitive formulae with only 2 to 5 parameters are fitted to mortality experience through

a statistical model. Figure 1 demonstrates how such a 3-parameter model can capture the shape and level

of a standard mortality table that was constructed by “traditional” means, including the use of Whittaker-

Henderson smoothing at core ages. The standard table invoked is the lives-weighted version of the RP-2014

table for males from the Society of Actuaries (RPH-2014).2

Figure 1: Fitting a 3-Parameter Formula to the RPH-2014 Table for Males
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Clearly, the 3-parameter formula allows for a very simple model that still captures the same information

in the 51 rates of RPH-2014 table.

The dataset used for the CPM2014 tables from the Canadian PensionersMortality study released in 2014

2See SOA (2014). For purposes of this illustration, the Makeham-Perks mortality law found in Table 3 is “fitted” to the loga-

rithm of the graduated RPH-2014 probabilities of death (converted to approximate central rates via 𝑚𝑥 ≈ −𝑙𝑜𝑔 (1 − 𝑞𝑥)) using
ordinary least-squares regression with no weightings over the entire 60 to 110 age range. The estimated parameter values, fitting

Makeham-Perks directly to 𝑚𝑥, are −13.2042 for the “intercept” (𝛼), 0.1269 for the “slope” (𝛽), and −5.1565 for the “Make-

ham” parameter (𝜖). It should be noted that the RP-2014 family of tables were extended to the higher ages with a logistic function

(Kannisto) consistentwith theMakeham-Perks shape at those same ages, and thus the good fit at higher ages is not itself unexpected.

©2018 Society of Actuaries
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(see CIA (2014)) will be employed as a case study to illustrate the application of the concepts to be examined

below. The grouped data is publicly available and the main subsets of the CPM2014 dataset used in this

paper can be found in Appendix A.

All graphs below were created with R (R Core Team (2017)), as was the case for the majority of the

statistical modelling. A version of the R code used for most of the modelling is made freely available as

Appendix B. Typesetting was done in LATEX. References to the logarithm 𝑙𝑜𝑔 are to be taken to refer to the

natural logarithm 𝑙𝑜𝑔𝑒 unless otherwise stated.

©2018 Society of Actuaries
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2 Mortality Experience Data

The data typically available for mortality analysis at a grouped level includes the following:

• Deaths counts at each age 𝑥 (denoted 𝑑𝑥)

• Population exposed-to-risk at each age 𝑥, or time lived, ideally the central (as opposed to initial) expo-

sure (denoted 𝐸𝑥)
3

• Benefit/policy amounts

• Additional attributes to allow analysis by risk factors, including gender, product, duration since com-

mencement of benefit or policy, coverage (pensioner or surviving spouse, etc.), health status, smoking

status where available, geographical and socio-economic information, etc.

For grouped data, the crude experience can be expressed in terms of the central death rate 𝑚𝑥 = 𝑑𝑥
𝐸𝑥

if

the central exposure is used.4 The central death rate 𝑚𝑥 is closely related to the force of mortality 𝜇𝑥, and
thus models for 𝑚𝑥 can be considered to be ones in continuous time. The relationships between the various

rates, probabilities, and quantities, as well as other considerations regarding central exposure and the force

of mortality, are provided in Appendix C.

It is crucial that the experience be as free of systematic bias as possible. In terms of the basic experience

such as the deaths counts and exposure measures, that mainly means ensuring that certain individuals are

not systematically excluded, particularly those who died during the observation period. The potential bias

introduced into the risk factors can be especially problematic and subtle. For instance, a low pension amount

may well indicate low service, such as may be the case for professionals changing employers frequently, as

opposed to lower salary. Also, the place of residence (the postal code or ZIP code) may be more likely to be

missing for deceased individuals than for survivors.

Addressing potential bias in the experience data is particularly important in relation to risk differentiators

as the mortality differentials between various risk groupings are rarely proportional across all ages. The

impact of nearly every risk differential lessens over age. For example, consider the central death rates 𝑚𝑥
for males and females in Canada in 2011 that are provided in Figure 2.5

The difference between the two sexes lessens over age. As age is too vital a factor to ignore, we must

account for the age shape of the impact of a risk factor. In this case, gender and age can either be modelled

separately by splitting the experience data into separate parts for males and females (stratified) or modelled

simultaneously using a multivariate approach. Otherwise, any conclusions drawn from the resulting model

will be systematically flawed. The age structure across risk factors is one of the keymotivations for developing

a statistical modelling framework for mortality graduation.

3Central exposure is often denoted 𝐸𝑐
𝑥 to distinguish it from initial exposure. The superscript will generally be excluded in this

paper, but references to 𝐸𝑥 should be taken to mean the central exposure unless stated otherwise.
4Note that the crude experience would bemodelled through the probability of death 𝑞𝑥 if the initial exposure was instead used.
5Source: CHMD (2014)
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Figure 2: Crude Male and Female Mortality for Canadians in 2011
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3 Introduction to Graduation

The main example in this and subsequent sections draws upon the male CPM2014 dataset, on a lives basis

with no further stratification (i.e., across both public and private sectors and any of the other risk factors

available).6 The crude central deaths rates (𝑚𝑥) for ages 50 through 100 are provided as Figure 3.

Figure 3: Crude Central Mortality Rates under the CPM2014 Dataset on a Lives Basis
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The mortality pattern demonstrates an exponential increase with age. Reverting to a logarithmic y-axis

makes it easier to observe the inherent age structure, which is largely log-linear, as indicated in Figure 4.

The simplest model to capture the pattern in Figure 4 is a (log-)linear relationship, i.e. 𝑚𝑥 = 𝑒𝛼+𝛽𝑥 ⟹
𝑙𝑜𝑔 (𝑚𝑥) = 𝛼 + 𝛽𝑥 with 𝛼 the “intercept” and 𝛽 the “slope” by age. The crude experience appears best

behaved between ages 55 and 95, so analysis will be restricted to that range. To start, we fit the simple

6The data available with respect to the CPM2014 dataset was tabulated on an age nearest birthday (ANB) basis and only the

initial exposure is available. For purposes of this paper, the age definition is effectively ignored, and the central exposure estimated

from the initial exposure and deaths according to equation (C.4).

©2018 Society of Actuaries
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Figure 4: Crude Central Mortality Rates under the CPM2014 Dataset on Logarithmic Scale
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linear model by least-squares regression without any weightings,7 which results in 𝑙𝑜𝑔 (𝑚𝑥) = −11.6253 +
0.1102𝑥, as provided in Figure 5.

Even though it is a very simple model, the straight line appears to fit reasonably well. So, for this set of

crudemortality experience, we appear to have a workablemodel. However, there is a major drawback to the

least-squares approach; no allowance has been made for the fact that greater statistical credibility applies to

those ages with a larger death count and more exposure.

As the aim is to push the limits of mortality analysis and find methods to measure the reliability of our

results, the following sections will generalize the modelling beyond simple linear regression and introduce a

fully developed statistical framework.

7In this case, minimizing the following function with respect to the parameters 𝛼 and (𝛽): ∑
𝑥

[𝑙𝑜𝑔 ( 𝑑𝑥
𝐸𝑥

) − (𝛼 + 𝛽𝑥)]
2

©2018 Society of Actuaries
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Figure 5: Unweighted Linear Regression Applied to CPM2014 Dataset
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4 A Statistical Approach to Graduation

In the preceding section, the least-squares linear regressionwas unweighted. However, conceptually it would

make sense to place more weight on ages where more experience is available. Critically, with unweighted

least-squares the variance of themortality process is assumed to be constant across all ages (homoscedastic-

ity), which is not realistic as therewill be different levels of deaths and exposures at each age, each suggesting

a different variance.

To allow for differing variances by age and achieve a more appropriate fit, the least-squares regression

could be modified to weight the squared differences at each age. In a least-squares context, such a weight

would ideally be greatest where the variance of the quantity under measurement is smallest, which can be

achieved by using a function of exposures or observed deaths. Another approach is to determine natural

weightings following from an assumption regarding the distribution of deaths at a given age, which is devel-

oped in what follows.

The random variable of interest is that for the deaths count at each age, which we will denote 𝐷𝑥. So
long as the lives are independent over an age 𝑥, we can assume that the deaths count at each age is Poisson-

distributed,8 where the expected value (and variance) in terms of the estimator of 𝑚𝑥, 𝑚̂𝑥, is 𝜆 = 𝐸𝑥𝑚̂𝑥:
9

𝐷𝑥 ∼ 𝑃 𝑜𝑖𝑠𝑠𝑜𝑛 (𝐸𝑥𝑚̂𝑥) (1)

Under the Poisson assumption, the probability mass function with expected value 𝜆 is as follows:

Pr (𝐾 = 𝑘) = 𝑒−𝜆 𝜆𝑘

𝑘!
(2)

The above holds for each age 𝑥. Therefore, if we can assume that the observed deaths counts are in-

dependent, multiplying the probability for observing the age-specific deaths count for each age yields the

(conditional) likelihood function, where 𝑚̂𝑥(𝜃) is a function of parameters 𝜃:

𝐿 (𝜃) ∝ ∏
𝑥

𝑒−𝐸𝑥𝑚̂𝑥(𝜃) (𝐸𝑥𝑚̂𝑥(𝜃))𝑑𝑥

𝑑𝑥!
(3)

To obtain the optimal estimates of the parameters 𝜃 given the observations and model form, we deter-

mine the parameter set that maximizes the value of the above likelihood function, i.e., maximum likelihood

estimation (MLE). Maximizing generally entails taking derivatives, and as the sum rule for derivatives is much

simpler than the product rule, it is almost always more straightforward to maximize the log-likelihood func-

tion:10

𝑙 (𝜃) = ∑
𝑥

[−𝐸𝑥𝑚̂𝑥(𝜃) + 𝑑𝑥𝑙𝑜𝑔 (𝐸𝑥𝑚̂𝑥(𝜃)) − 𝑙𝑜𝑔 (𝑑𝑥!)] (4)

8Also see Forfar et al. (1988) for discussion of some additional considerations. There are a number of situations where the basic

Poisson model may potentially be insufficient, particularly when the variance of 𝐷𝑥 is greater than the mean, which violates the

Poisson assumption. Refer to Appendix D for a brief discussion of how to handle such overdispersion.
9In this paper, 𝑚𝑥 is effectively a convenient shorthand for 𝜇𝑥+ 1

2
. Alternatively, the ratio 𝑚𝑥 = 𝑑𝑥

𝐸𝑥
could be assumed to refer

to the integrated hazard: ∫1
0

𝜇𝑥+𝑡 d𝑡. Refer to Appendix C for additional details
10Since the logarithm is a strictly monotonic function, the set of parameters that maximizes the log-likelihood also maximizes

the likelihood function itself.
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The above can be simplified even further, as 𝑑𝑥! does not depend on 𝑚̂𝑥 and disappears when you take

the derivative, and the 𝑙𝑜𝑔 (𝐸𝑥𝑚̂𝑥(𝜃)) can be replaced by 𝑙𝑜𝑔 (𝑚̂𝑥(𝜃)) for the same reason.11

The Poisson assumption automatically weights based on how much experience is available at each age

of observation and allows the variance to vary across the age range, which is a distinct improvement over

the simple least squares approach.

We continue to use the simple log-linear model for 𝑚𝑥 and estimate the parameters by maximizing

equation (4). The resulting death rates are shown in Figure 6 and the corresponding deviance residuals in

Figure 7. Deviance residuals represent the deviations between the observed and modelled deaths.12 If the

residuals are randomly distributed according to a standard normal distribution, the residuals will be randomly

scattered about zero, with only 1-in-20 falling outside ±1.96.

The deviance residuals in Figure 7 appear to be fairly random. Any clear patterns would imply that a

more complex model is necessary to capture the information not explained by our model. However, for the

case at hand this does not appear necessary, and so the simple log-linear model already provides a good fit.

Beyond visual inspection of the fit and residuals, operating under a statistical framework permits us to

apply statistical tests, such as:

• Pearson’s 𝝌2 Test: A goodness-of-fit test with the test statistic13 assumed to follow a 𝜒2 distribution

with degrees of freedom equal to the number of observations (number of ages in our case) less the

number of parameters.

• Sign Test: Residuals should be equally likely to be above or below zero. The sign test involves calculat-

ing the probability that the observed split between positive and negative residuals follows a binomial

distribution. If that probability is low, say below 0.05 or 0.10, then the residuals potentially would be

considered to be insufficiently random.

• Runs Test: Involves calculating the probability of observing a number of runs of positive or negative

residuals given the counts of positive and negative residuals. If the resulting probability of observing

a particular number of runs or fewer in the residuals is quite low (suggesting the presence of too

few runs) or high (suggesting too many runs), the randomness of the residuals might be called into

question.

• Information Criteria: As mentioned in the introduction, our aim is to retain the simplest possible

model that captures the optimal amount of information from the experience and provides us with

reliable predictions. One measure of “simplicity” is the number of parameters within a model. For

11In this paper, the “full” log-likelihood function defined by equation (4) is employed as it is generally more conveniently

scaled, and introduces no computational issues. However, the simplified log-likelihood function, which is given by 𝑙 (𝜃) ∝
∑
𝑥

[−𝐸𝑥𝑚̂𝑥(𝜃) + 𝑑𝑥𝑙𝑜𝑔 (𝑚̂𝑥(𝜃))] is sufficient in most cases, and also is equivalent to assuming a constant force of mortality

within individual ages 𝑥, as illustrated in Forfar et al. (1988).
12 Under the Poisson assumption, with 𝑑𝑥 the observed deaths and 𝑓𝑥 the deaths fitted under the model at a given age, the

deviance residual at that age is calculated as follows, with 0𝑙𝑜𝑔 (0) taken to be zero:

𝑠𝑖𝑔𝑛 (𝑑𝑥 − 𝑓𝑥) √2 [𝑑𝑥𝑙𝑜𝑔 (𝑑𝑥
𝑓𝑥

) − (𝑑𝑥 − 𝑓𝑥)]

13𝜒2 = ∑
𝑥

(𝑑𝑥−𝑓𝑥)2

𝑓𝑥
, where𝑑𝑥 are the observed deaths (assumed to be independent of each other) and 𝑓𝑥 the deaths expected

(fitted) under the model.
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Figure 6: Log-Linear Poisson Model Applied to CPM2014 Dataset
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instance, a mortality table from ages 55 to 95 years based on the crude death rates themselves would

consist of 41 parameters, one for each age. Our log-linear model, which appears to capture all the

same information, requires only two parameters. Thus, the simple straight line “wins” easily.

A more general way of quantifying the preference for simple models with the fewest parameters (i.e.,

parsimonious models), is to balance the goodness-of-fit as expressed through the log-likelihood with

the number of parameters in the model. That is precisely what various information criteria do:

– Akaike’s Information Criterion (AIC): −2𝑙 + 2𝐾, where 𝑙 is the maximum of the log-likelihood

under the model and 𝐾 is the number of parameters.

– Bayesian Information Criterion (BIC): −2𝑙+𝑙𝑜𝑔(𝑁)𝐾, where 𝑙 and 𝐾 are as above and 𝑁 is the

number of observations (number of ages in our context).

With both the AIC and BIC, the lower the score, the better the relative fit of themodel, balanced against

the number of parameters. The BIC penalizes complexmodels to a greater degree than the AIC so long
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Figure 7: Deviance Residuals – Log-Linear Poisson Model
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as there are more than seven observations.

Table 1 provides the values for the above measures and tests for the linear models. The Poisson-based

model yields a much higher p-value under the 𝜒2 test and a non-significant one under the runs test, suggest-
ing a better fit.

The significance legend herein is the same as that used by R Core Team (2017) ( ∗ ∗ ∗ for 0.1%, ∗∗ for

1%, ∗ for 5%, and ⋅ for 10%).

It is important to ensure that extraneous parameters are not included in the models to avoid overfitting

or misleading conclusions. The AIC, BIC, and similar criteria help greatly in that respect, but at the same

time we have to ensure that each individual parameter estimate is statistically significant, which means we

have not just fitted to random fluctuations. That can be determined by calculating the standard errors for

the parameters, calculating the two-way Z statistic and determining the resulting p-values. The relevant

quantities with respect to the log-linear model under the Poisson distribution assumption are provided in

Table 2. Unsurprisingly, both parameters are found to be highly significant.

But what happens if the simple straight line does not capture all the information? The following section
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Table 1: Model Fit under Log-Linear Modelling

Log-Linear Least-Squares Log-Linear Poisson Model

Parameters 2 2

Intercept (log scale) −11.6253 −11.7109

Slope (log scale) 0.1102 0.1113

Log-Likelihood −204.60

AIC 413.20

BIC 416.63

𝜒2 Statistic 51.39 44.99

Degrees of Freedom 39 39

𝜒2 p-value 0.0885 0.2355

𝜒2 Significance ⋅ not significant

Positive Residuals 21 20

Negative Residuals 20 21

Sign Test p-value 0.5000 0.5000

Signs Test Significance not significant not significant

Runs 14 20

Runs Test p-value 0.0130 0.3789

Runs Test Significance ∗ not significant

Table 2: Parameters under Log-Linear Poisson Model

Parameter Estimate Standard Error Z p-value Significance

Intercept (𝛼) −11.7109 0.0377 −310.61 0 ∗ ∗ ∗

Slope (𝛽) 0.1113 0.0005 235.51 0 ∗ ∗ ∗

will generalize the form of 𝜇𝑥 or 𝑚𝑥 beyond a log-linear model.
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5 Generalizing the Functional Form

As illustrated in the two preceding sections, a log-linear form already fits the experience of Canadian male

pensioners. However, there are many situations where a more complex age shape is warranted, and wemay

even be able to do better than the log-linear form for the dataset at hand. It is important to get the general

age shape right before including parameters to describe additional risk factors. As age is such an important

risk factor, any systematic bias that might be present if the age shape is not captured accurately will confound

the impact of other risk factors.

The log-linear form explored above assumes that mortality increases at an exponential rate with age.

That assumption is equivalent to the mortality law put forth in Gompertz (1825):14

𝜇𝑥 = 𝑒𝛼+𝛽𝑥 (5)

Themortality laws explored in this paper are properly expressed directly in terms of the force ofmortality

𝜇𝑥. However, for simplicity we are applying the relevant law to 𝑚𝑥 instead. The results would not have been

materially different had an approach applying the relevant law to𝜇𝑥 had been employed. Refer to Appendix C

for details on how 𝜇𝑥 and 𝑚𝑥 relate.

Makeham (1860) and Makeham (1867) describe an extension to Gompertz’ law that involves adding a

positive constant to better capture mid-age mortality:

𝜇𝑥 = 𝑒𝜖 + 𝑒𝛼+𝛽𝑥 (6)

In Perks (1932), a logistic extension to Makeham’s law is first presented, with a very insightful hetero-

geneity/frailty argument for the resulting form conceived subsequently in Beard (1959). This quite general

mortality law is referred to as “Makeham-Beard” in Richards (2012) and in what follows, and is described by

the intercept and slope parameters 𝛼 and 𝛽, the “Makeham” parameter 𝜖, and the “Beard” parameter 𝜌:

𝜇𝑥 = 𝑒𝜖 + 𝑒𝛼+𝛽𝑥

1 + 𝑒𝛼+𝜌+𝛽𝑥 (7)

In Richards (2012), the key mortality laws employed are Gompertz, Makeham, and the simplifications of

the Makeham-Beard law where 𝜌 = 0 (the “Makeham-Perks” law), 𝜖 → −∞ (the “Beard” law), and where

𝜌 = 0 and 𝜖 → −∞ (the “Perks” law). A comparison of the force of mortality 𝜇𝑥 under certain laws from

Richards (2012) is given in Figure 8, where in the relevant laws 𝛼 = −12, 𝛽 = 0.12, 𝜖 = −6, and the Beard

parameter 𝜌 set to 1 or −1 as indicated.

The laws shown in Figure 8 are particularly well-behaved and suitable for extrapolation to the higher

and lower ages. However, if the practitioner suspects further structure in the mortality experience data, it

is possible to generalize by replacing the additive Makeham constant and Gompertz linear form with higher-

order polynomials, described in Forfar et al. (1988) as the generalized Gompertz-Makeham family of laws

𝐺𝑀(𝑟, 𝑠):15

14Gompertz’ original, equivalent expression was more similar to 𝜇𝑥 = 𝐵𝑐𝑥, with 𝐵 and 𝑐 being positive constants. We adopt

the convention in Richards (2012) where when a parameter 𝜃 must be positive, 𝑒𝜃′ = 𝜃 is used instead. That aids in fitting the

parameters as they are then free to vary over the entire real line and need not be explicitly constrained. It is also convenient, where

possible, to have the parameters on a logarithmic scale.
15See Appendix E for details on how the 𝐺𝑀(𝑟, 𝑠) family is generally fit in practice, which includes fitting to a polynomial

function of a transformation of 𝑥 as opposed to 𝑥𝑘 directly.
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Figure 8: Comparison of Main Mortality Laws under Richards (2012)
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𝜇𝑥 = 𝐺𝑀(𝑟, 𝑠) =
𝑟−1
∑
𝑖=0

𝑎𝑖𝑥𝑖 + 𝑒
𝑠−1
∑

𝑗=0
𝑏𝑗𝑥𝑗

(8)

Note that the Gompertz law under Richards (2012) is equivalent to a 𝐺𝑀(0, 2), and the Makeham law

is equivalent to a 𝐺𝑀(1, 2). Additionally, Makeham’s second law described in Makeham (1890) is the same

as a 𝐺𝑀(2, 2). Table 3 summarizes the various laws.

The CMI has utilized some formof the𝐺𝑀(𝑟, 𝑠) family in the graduation ofmortality tables over key ages

for many years. The most recent standard tables constructed from the experience of employer-sponsored

pension plans in the United Kingdom (the “S2” Series) mainly relied upon 𝐺𝑀(1, 3) or 𝐺𝑀(0, 4) forms (see

CMI WP 071 (2014)). The most recent annuitant standard tables (the “08” Series) opted for simpler forms,

effectively 𝐺𝑀(0, 3), 𝐺𝑀(0, 4), or 𝐺𝑀(0, 5), as found in CMI WP 078 (2015). In all cases, relatively few

parameters are involved.
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Table 3: Selected Mortality Laws

Richards (2012) 𝐺𝑀(𝑟, 𝑠) Force of Mortality 𝜇𝑥

Gompertz 𝐺𝑀(0, 2) 𝑒𝛼+𝛽𝑥

Makeham 𝐺𝑀(1, 2) 𝑒𝜖 + 𝑒𝛼+𝛽𝑥

Perks 𝑒𝛼+𝛽𝑥

1+𝑒𝛼+𝛽𝑥

Beard 𝑒𝛼+𝛽𝑥

1+𝑒𝛼+𝜌+𝛽𝑥

Makeham-Perks 𝑒𝜖+𝑒𝛼+𝛽𝑥

1+𝑒𝛼+𝛽𝑥

Makeham-Beard 𝑒𝜖+𝑒𝛼+𝛽𝑥

1+𝑒𝛼+𝜌+𝛽𝑥

𝐺𝑀(𝑟, 𝑠)
𝑟−1
∑
𝑖=0

𝑎𝑖𝑥𝑖 + 𝑒
𝑠−1
∑

𝑗=0
𝑏𝑗𝑥𝑗

In North America, while graduations based on Makeham’s original laws were once common, graduation

by mathematical formula has fallen out of favour. One relatively recent example is found in Panjer and Tan

(1995) for Canadian insured mortality for the period from 1986 to 1992. Makeham’s second law (i.e., a

𝐺𝑀(2, 2)) is invoked to graduate the experience over ages 40 to 99 for males and 44 to 99 for females.

However, the fit is made using least-squares regression weighted with the exposure at the relevant age as

opposed to maximum likelihood estimation.

Continuing the North American perspective, Chan and Panjer (1979) describe a method of employing

maximum likelihood estimation to graduate mortality according to laws such as Gompertz and Makeham.

The Poisson assumption is not invoked, as the paper focuses on building the likelihood function up from

the level of the individual. As shown in Forfar et al. (1988), maximizing the likelihood function developed

for grouped data in that paper results in equivalent parameterizations to maximizing the Poisson likelihood.

Tenenbein and Vanderhoof (1980) suggest that there are many advantages of working with mathematical

models of mortality and presents some extensions of Gompertz and Makeham.

To determine whether one of the model forms in Table 3 may perform better than the Gompertz model

that we have already examined, we fit each law one-by-one, and find values of the AIC and BIC. The results

are tabulated in Table 4.

There is not much to separate the “top” models, but the 4-parameter 𝐺𝑀(1, 3) slightly edges out the
others under both measures. The parameter estimates under the 𝐺𝑀(1, 3) model (as provided through

equation (8)) are provided in Table 5, along with the standard errors, the Z score, the p-value, and the signif-

icance.

The fit and residuals are not shown as there is little change from that of the Gompertz. However, given

that the 𝐺𝑀(1, 3) does appear to result in a slightly better-fitting model with parameter estimates all signif-

icant, we can consider it as the final model for fitting the CPM2014 male dataset on a lives basis.
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Table 4: Measures of Model Fit for Males in the CPM2014 Dataset under Various Laws

Law Parameters AIC BIC

Gompertz / 𝐺𝑀(0, 2) 2 413.20 416.63

Makeham / 𝐺𝑀(1, 2) 3 415.03 420.17

Perks 2 453.30 456.73

Beard 3 412.40 417.54

Makeham-Perks 3 411.64 416.78

Makeham-Beard 4 407.47 414.32

𝐺𝑀(0, 3) 3 414.62 419.76

𝐺𝑀(0, 4) 4 407.86 414.72

𝐺𝑀(0, 5) 5 409.65 418.21

𝐺𝑀(1, 3) 4 407.34 414.20

𝐺𝑀(1, 4) 5 409.34 417.91

𝐺𝑀(2, 2) 4 407.61 414.47

𝐺𝑀(2, 3) 5 409.23 417.80

Table 5: Parameters under 𝐺𝑀(1, 3) Model for CPM2014 Males

Parameter Estimate Standard Error Z p-value Significance

𝑎0 0.001440 0.000412 3.4944 4.7506𝑒 − 04 ∗ ∗ ∗

𝑏0 −4.474429 0.172141 −25.9928 0 ∗ ∗ ∗

𝑏1 6.129081 0.173795 35.2662 0 ∗ ∗ ∗

𝑏2 −0.466494 0.146658 −3.1808 1.4686𝑒 − 03 ∗∗

It should be noted that logistic formulae tend to become the better fittingmodels at higher ages and this is

especially so if the underlying population is particularly heterogeneous. To illustrate, we can invoke the frailty

arguments explored in Beard (1959) and Richards (2008). Assume three risk groups are represented in the

population, the mortality for each being captured through Makeham’s law with 𝛽 = 0.13 and 𝜖 = −5, and
with the “intercept”𝛼 being−12,−13, and−14 for the high, middle, and lowmortality groups, respectively.

Now, we simulate a process where 50,000 individuals commence a benefit or policy at exact age 50 at the
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beginning of each year, where 15,000 (30%), 27,500 (55%), and 7,500 (15%) are assumed to fall within the

high, middle, and low mortality groups, respectively. For each individual the remaining lifetime is simulated

directly using the cumulative distribution function, as described in Richards (2012). The simulated experience

in the 61st year of this process in then tabulated and treated as “crude experience” in Figure 9.

Figure 9: Illustration of the Frailty Argument
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The simulated experience resulting from combining the three risk groups is clearly not well explained

by any of the Makeham laws. In fact, the best fitting model is a Makeham-Beard (with parameters for the

force of mortality 𝜇𝑥 of 𝛼 = −12.0251, 𝛽 = 0.1213, 𝜖 = −5.0800, and 𝜌 = 0.7588 with the particular

set of simulated data). This is a basic illustration of the frailty argument for the Beard parameter. Effectively,

with advancing age the survivors tend more and more towards to lower mortality groups, creating the Beard

shape.16

16The frailty result is developed mathematically in Richards (2008), where it is demonstrated that a Makeham-Beard form at the

population level is obtained in a scenario where the underlying individuals’ mortality patterns follow a Makeham form where 𝑒𝛼 is

drawn from a gamma distribution.
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The illustrative simulation described above provides a useful intuition for the Beard parameter and shape.

A positive value of the Beard parameter thus can be directly associated with heterogeneity within a pool of

mortality experience data. In some applications, it will not be possible to identify the different risk groups that

are contributing different mortality patterns to the overall experience, such as the study of population level

mortality or aggregated within an industry experience study. However, in instances where the practitioner

has access to additional information on the lives in question and where it is possible to model the different

risk classes within the overall model, this will be preferable to the aggregate model with the accompanying

heterogeneity. Using an aggregate model without accounting for the heterogeneity always introduces distri-

bution risk, i.e. the risk that the distribution of the group being modelled is different from the group which

supplied the experience data. In addition, capturing the shape of the heterogeneous experiencemay require

a complex functional form, if a suitable one can be found at all. Incorporating differentials into the model

or stratifying the dataset according to key risk classes will often allow a simpler underlying structure to be

employed. Section 8 introduces risk factors in the context of our case study.
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6 Extension to Higher & Lower Ages

It is often necessary to extend the graduated rates to older and younger ages where there is insufficient

experience. Extending mortality rates to higher ages is especially important for annuitant and pensioner

tables. Methods for extending the tables to higher ages include the logistic extension, akin to the Perks or

Beard laws in Table 3, a polynomial extension (usually cubic), or to gradually converge towards a population

table. Along a different vein, Li et al. (2008) applies extreme value theory to model mortality at the highest

ages.

CMI WP 085 (2015) and CMI WP 100 (2017) provide an excellent overview of the various approaches

available for extension to higher ages, including a summary of which approaches have been used in standard

tables in the UK, the United States, and Canada. Those working papers also provide a summary of recent

research into mortality patterns at high ages. Both are publicly and freely available.

Ages below those at which there is ample experience can actually pose even greater problems than the

ages above. In some cases, itmay notmake sense to extrapolate to younger ages as the younger agemortality

applies to a different population. For example, pensionermortality rates in the 50s and early 60s only capture

the portion of the pension plan’s membership who have retired. The portion still in active service are likely

to be in better health than their counterparts who have already retired. Therefore, extending the mortality

rates to the younger ages based solely on the experience of retired members may not be appropriate. In

such a situation, a separate mortality table would ideally be graduated for the active members, as was the

case for the RP-2014 tables. The large differences between the active and healthy annuitant (approximate)

central mortality rates under the lives-weighted versions of the RP-2014 tables for males (i.e., RPH-2014) are

illustrated under Figure 10.17

If the rates are to be extended to the lower ages, some version ofMakeham’s law (or a𝐺𝑀(𝑟, 𝑠) law), or
otherwise some form of polynomial, will likely prove satisfactory in many situations. For instance, extensions

using 𝐺𝑀(𝑟, 𝑠) forms were adopted for the “S2” series of pensioner tables in the UK (see CMI WP 071

(2014)).

One of the advantages of graduating mortality tables by mathematical formula is that certain laws such

as Makeham-Perks or Makeham-Beard in Table 3 automatically extend to both younger and higher ages

in a manner consistent with the underlying experience (assuming that the populations to which the ex-

tended rates will be applied are consistent with the population included in the graduation). For example, the

Makeham-Perks law can be applied to the lives-based (unweighted) CPM2014 dataset for males explored

above across the 55 to 95 age range and the resulting function allowed to naturally extend over the 50 to

110 range. The fit of the Makeham-Perks law over 55 to 95 is good, and provides for a particularly clean and

smooth extension.

The fit and extension is provided in Figure 11, with the parameters estimated as 𝛼 = −12.6846, 𝛽 =
0.1242, and 𝜖 = −6.6287. The 97.5th and 2.5th percentiles (i.e., the higher and lower bounds of the 95%

confidence intervals) for the central mortality rates at each age based on the raw data are also provided for

context.18 The fit appears more than adequate at all ages, including the extensions at the lower and higher

ages, and thus the Makeham-Perks model could be considered as an alternative to the 𝐺𝑀(1, 3) model

17See SOA (2014)
18The percentiles are calculated directly, by determining the corresponding percentile from the inverse of the Poisson cumulative

distribution function for the deaths count. The mean of the Poisson is equal to the observed deaths (the 𝑑𝑥 for that age), and the

result is then divided by the exposure 𝐸𝑥 at the age.
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Figure 10: Comparison of the Healthy Annuitant and Employee (Active) RPH-2014 Rates
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selected above where simple, reasonable extensions are desired.

A disadvantage of employing𝐺𝑀(𝑟, 𝑠) forms involving higher-order (i.e., greater than first degree) poly-

nomials is that extrapolations outside the age range graduated are generally poorly behaved. Thus, when

such higher-order polynomials are invoked, extensions must be made in subsequent steps following gradu-

ation.
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Figure 11: Graduation and Extension of CPM2014 Male Experience Using Makeham-Perks
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7 Smoothing through P-splines and Similar

The mortality laws discussed above are indeed very flexible and powerful, but there may be instances where

the practitioner desires even greater flexibility. There are many smoothing techniques available. One which

has become very popular in actuarial applications uses B-splines (basis splines) with difference penalties, re-

ferred to as P-splines. P-splines were introduced by Eilers and Marx (1996) and were extended to modelling

two-dimensional mortality data by Currie et al. (2004). The basic concept is to carry out a regression to gen-

erate a smooth function by “splicing together” piecewise polynomials at certain intervals, with the meeting

points called knots.19

We can find an expression for 𝑙𝑜𝑔(𝜇𝑥) using B-splines 𝐵𝑖(𝑥) with coefficients 𝜃𝑖 as follows:

𝑙𝑜𝑔 (𝜇𝑥) =
𝑠

∑
𝑖=1

𝜃𝑖𝐵𝑖(𝑥) (9)

The number of splines required (𝑠) is determined by the knot-spacing chosen and the age range under

consideration. The B-splines 𝐵𝑖(𝑥) are usually piecewise cubic polynomials.

By adding a penalty function to the log-likelihood we can force the splines into a chosen level of smooth-

ness. That penalty function can be defined in terms of finite differences of order 𝑁 with respect to the

coefficients 𝜃𝑖 as:

𝑃 (𝜃) =
𝑠−𝑁
∑
𝑖=1

(Δ𝑁
𝜃𝑖

)
2

=
𝑠−𝑁
∑
𝑖=1

(
𝑁

∑
𝑗=0

(𝑁
𝑗

) (−1)𝑁−𝑗 𝜃𝑖+𝑗)
2

(10)

For example, with the common choice of finite differences of order two (𝑁 = 2) the penalty function

takes this form:

𝑃 (𝜃) = (𝜃1 − 2𝜃2 + 𝜃3)2 + … + (𝜃𝑠−2 − 2𝜃𝑠−1 + 𝜃𝑠)2

The penalized log-likelihood function in terms of 𝜃 can then be expressed by a base log-likelihood function
𝑙(𝜃) (say as determined under equation (4)) and a smoothing parameter 𝜆:

𝑙𝜆(𝜃) = 𝑙(𝜃) − 1
2

𝜆𝑃 (𝜃) (11)

The system of B-splines returned by maximizing equation (11) is referred to as a penalized B-spline, or

a P-spline. The 𝜆 parameter can be selected arbitrarily or with reference to a measure that balances the

absolute log-likelihood with the effective number of parameters20 in the model such as the AIC or BIC.

With P-splines, the key modelling decisions are with respect to the knot-spacing, the finite difference

order, and the smoothing parameter 𝜆.
19In this paper, the knots are constrained to be equidistant apart, which simplifies the required calculations. However, the knot

spacing need not be equidistant. Early work involving applying splines to mortality experience focused on attempts to determine

the optimal number of splines and corresponding spacing, which the use of P-splines effectively circumvents at the cost of the

introduction of the penalty term to the log-likelihood function.
20Note that by introducing the penalty function, we are reducing the degrees of freedom. This means that the greater the

penalty, the lower the “effective” number of parameters.
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The mortality (whether the 𝑞𝑥, 𝑚𝑥, or a logarithm of either) can also be fitted using a “mechanical”

method that precedes modern statistics that is usually referred to as Whittaker-Henderson. This method

of graduation was first presented in Whittaker (1923). Retaining much of the parameterization above, the

Whittaker-Henderson smoothing of the crude values 𝑦𝑥 (whether those be 𝑚𝑥, the 𝑞𝑥, or other) over 𝑘
ages, subject to smoothing parameter 𝜆, optional weights 𝑤𝑥, and finite difference order 𝑁, are those 𝜃𝑥
thatminimize the following expression:

𝑘
∑
𝑥=1

𝑤𝑥 (𝑦𝑥 − 𝜃𝑥)2 + 𝜆
𝑘−𝑁
∑
𝑥=1

(Δ𝑁
𝜃𝑥

)
2

(12)

Equation (12) is reminiscent of the penalized log-likelihood function under equation (11). Indeed, as

discussed in Currie (2015), if the knot-spacing in a P-spline is set equal to a single year-of-age, the order of

the underlying B-splines is set to zero, and the Poisson log-likelihood function replaced with the (potentially

weighted) least-squares difference, the Whittaker-Henderson result is equivalent to this special case of P-

splines.

Let us compare the graduations obtained through the graduation by the mathematical formula process

above to what we would get using other approaches. Figure 12 compares the resulting graduations under

three methods for the CPM2014 male dataset with no further stratification on a lives basis:

• Mathematical Formula: The 𝐺𝑀(1, 3) curve developed under Section 5.

• P-splines:21 Modelling 𝑙𝑜𝑔 (𝑚𝑥), using equidistant knot spacing of 10 years (requiring seven piecewise
cubic B-splines over the 55 to 95 age range), a finite difference order (𝑁) of 2 for the penalty function,

and a smoothing parameter (𝜆) of 350. The value for 𝜆 was chosen as the approximate value of the

smoothing parameter found to minimize the BIC under the implementation employed.

• Whittaker-Henderson:22 This is the method that was used to graduate the published CPM2014 ta-

bles. For consistency, we will also model 𝑙𝑜𝑔 (𝑚𝑥) over ages 55 to 95 with Whittaker-Henderson. The

weights are based on the deaths,23 with the sum of the weights set equal to 41 (the number of ages),

the smoothing parameter (𝜆) to 500,24 and the finite difference order (𝑁) to 3.

As can be clearly seen, the three approaches result in nearly identical graduations. However, graduating

by mathematical formula results in a model with only 4 parameters, as compared to 7 (physical) parame-

ters for the P-splines and 41 “parameters” (being the 41 graduated 𝑚𝑥) under Whittaker-Henderson. The

smoothing mechanisms under the P-splines and Whittaker-Henderson significantly decrease the effective

dimension (or effective degrees of freedom) of the resulting model,25 but a model with fewer physical pa-

21The P-splines are fitted using the R package MortalitySmooth (Camarda (2012)), using the function Mort1Dsmooth with the

ndx parameter (the number of internal knots less one) set equal to 4 in order to achieve 10-year knot spacing over the 40 ages.
22The Whittaker-Henderson method is solved in R code in terms of crude observations y, smoothing parameter L, and finite

difference order N. By setting Id = diag(length(y)) as the identitymatrix, D = diff(Id, diff = N) the finite differencingmatrix,

and W the vector of weightings, the smoothed results under Whittaker-Henderson are obtained directly through:

solve (W ∗ Id + L ∗ crossprod (D) , W ∗ y)

23Using deaths as the weight is a reasonable approximation to assuming Poisson-distributed deaths counts.
24Note that although the P-spline andWhittaker-Henderson approaches have a similar penalty term, under the implementations

herein a smoothing parameter 𝜆 of 500 for Whittaker-Henderson represents a significantly higher degree of smoothing than a 𝜆 of

500 under the Poisson P-spline framework.
25See Eilers andMarx (1996) and Currie et al. (2004) for details. For example, the effective dimension of the P-splines fitted here

is approximately 3.7, while under the Whittaker-Henderson approach it is about 6.1.
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Figure 12: Graduated CPM2014 Central Mortality Rates for Males under Various Methods
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rameters with some intuitive interpretations provides considerable benefit when desiring to incorporate risk

factors. Those advantages will be introduced in the following section.
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8 Reflecting Risk Factors

To this point in the paper, we have limited our modelling to the CPM2014 male-only data on a lives-basis.

However, age and gender are not the only risk factors that have an influence onmortality. Therefore, we need

to be able to analyze the mortality differentials arising from other key risk factors. In general, it is critical to

capture factors that are financially significant, which often will include the benefit amount, e.g. pension,

annuity, sum insured, etc. As already discussed with respect to gender, the mortality differential will likely

depend on age.

One of the potential risk factors available in the CPM2014 dataset is whether a plan covers the employees

of corporations in the “private” or the “public” sector. At least in this dataset, the plans considered “private”

are mainly blue-collar, while the “public” plans mainly cover public administration and education employees,

meaning that the public sector mortality experience is expected to be lighter than the private sector expe-

rience. Figure 13 provides the raw central mortality rates for males in the two sectors on a lives basis, with

separate Makeham-Perks (chosen for simplicity) curves fitted over ages 55 to 95 and then extended to the

lower and higher ages.

The Makeham-Perks parameters for the private, public, and total graduations are provided in Table 6. In

all cases, the three parameters are highly significant.

Table 6: Makeham-Perks Parameters for Male Dataset Split by Sector

Dataset 𝜶 𝜷 𝝐

Private −12.621360 0.123481 −5.395322

Public −13.207571 0.129613 −6.577481

Total −12.684571 0.124192 −6.628663

The above is an example of stratification, where we split the experience across various classifications (in

this case, we split males into “sectors”) and thenmodel the subgroups independently. However, we could in-

stead attempt to model the experience of the risk groupings simultaneously, with certain parameters shared

between the groupings but allowing the others to vary. To illustrate that concept, we turn to the female

experience in the CPM2014 dataset, the corresponding raw experience split by sector found in Figure 14.

There is much less experience for females in the private sector than the public, particularly at lower

ages. However, the experience across the two sectors does appear to converge well. Fundamentally, we

have three choices: (a) we could model the total experience, without any distinction between the sectors,

(b) we could stratify the female experience by sector and model the experience completely independently

as we did above for the males, (c) or, finally, we could model the experience simultaneously, with certain

parameters shared between the sectors and the remainder allowed to vary. In this case, if a Makeham-Perks

model is again chosen, we could have the Makeham (𝜖) parameter shared between the female private and

public experience with the intercept (𝛼) and slope (𝛽) parameters allowed to vary by sector, or have the

intercept and slope shared but with the Makeham parameter varying by sector.

For purposes of this analysis, equation (4) must be modified to allow for the female public and private
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Figure 13: CPM2014 Male Experience and Graduation across the Private & Public Sectors
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experience to be separately considered.26 The resulting AIC and BIC scores under the four options considered

are provided as Table 7.

The 4-parameter approach, where the 𝛼 and 𝛽 parameters are shared but the 𝜖 allowed to vary, results

in the lowest AIC and BIC. The resulting parameters are shown in Table 8, where 𝜖 is theMakeham parameter

for public sector females (the baseline) and 𝜖 + 𝜖:PRIVATE that for those in the private sector. The fitted

curves and extensions are provided as Figure 15. The interaction between the Makeham parameter and

sector captures the apparent non-linear convergence between the public and private sector femalemortality.

Similar logic as the above allows us to incorporate any risk factor available in a dataset. One of the

most important factors is often the benefit amount applicable to an individual. Incorporating amounts in the

analysis is discussed in the following section.

26Specifically, the log-likelihood function in equation (4) is replaced by 𝑙𝑝𝑢(𝜃𝑝𝑢) + 𝑙𝑝𝑟(𝜃𝑝𝑟), where the parameter sets, death

counts, and exposures relate to the public sector for 𝑙𝑝𝑢 and 𝜃𝑝𝑢 and the private sector for 𝑙𝑝𝑟 and 𝜃𝑝𝑟.
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Figure 14: CPM2014 Female Crude Experience across the Private & Public Sectors
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Table 7: Measures of Model Fit for Female CPM2014 Dataset under Four Options

Model Parameters AIC BIC

No Distinction 3 794.34 801.56

All Parameters Varied 6 697.26 711.70

All but Makeham Varied 5 704.09 716.12

All but Makeham Shared 4 696.51 706.13

It should be noted that models applied to grouped data work well only if a small number of risk factors is

considered. Incorporating a wider set of risk factors is possible at the level of the individual. For case studies
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Table 8: Makeham-Perks Parameters for Female Dataset

Parameter Estimate Standard Error Z p-value Significance

𝜶 −14.763021 0.110190 −133.9776 0 ∗ ∗ ∗

𝜷 0.142683 0.001286 110.9788 0 ∗ ∗ ∗

𝝐 −6.290117 0.063950 −98.3594 0 ∗ ∗ ∗

𝝐:PRIVATE 1.033823 0.078870 13.1079 2.9658𝑒 − 39 ∗ ∗ ∗

Figure 15: Graduation and Extension of CPM2014 Female Rates Split by Sector
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of applying similar concepts on an individual basis, the reader is referred to Richards (2008) and Richards

et al. (2013).
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9 Concerning Amounts

In actuarial practice, the aim of mortality analysis is to quantify the financial impact of death or survivorship.

Therefore, the mortality rate for an insured life or the survival probability of an annuitant or pensioner will

be multiplied by a sum at risk or benefit amount to calculate the resulting payout of a life insurance policy,

annuity, or pension.

In addition to this, a correlation is observed between benefit amount or sum insured andmortality. Mor-

tality often is lighter for those with higher of these amounts, and this skew in the mortality by amounts

has direct financial implications. To illustrate the point, the experience across the thirteen amounts bands

available within the CPM2014 dataset for males will be analyzed.27

We apply a lives-based Makeham-Perks model to the CPM2014 male dataset for ages 65 to 95. This

constitutes the expected mortality basis for the actual-to-expected (A/E) ratios across all thirteen pension

amount bands as provided under Figure 16, along with the corresponding deviance residuals. The deviance

residuals are scaled to reflect the amount of experience available under each band, and can effectively be

considered standardized or weighted versions of the A/E ratios.

Figure 16 implies that using the average lives-based mortality rates graduated without accounting for

mortality differentials by amounts would lead to an underestimation of mortality for lives with lower than

average amounts and an overestimation ofmortality for lives with higher than average amounts. Considering

a financial application such as life insurance or pensions, the lives with the greater amounts also have a

greater financial impact. Therefore, on an amounts-weighted basis, the overall impact of mortality is lower

than on a lives-weighted basis; in other words, weighting the mortality rates by sum assured or benefit

amount leads to a lower average rate of mortality.28

As seen in Figure 17, the simple amounts-weighting shifts the average mortality lower, but does not

overcome the bias that the mortality of lives with lower than average amounts will be underestimated and

overestimated for lives with higher than average amounts. For short-term applications, such a crude ap-

proximation may be sufficient. It must always be top of mind that the best model is always the simplest that

manages to do the job. However, there are instances in which it will be necessary to improve upon themodel

and increase its complexity to make it useful.

Consider pensions for example. As stated above, applying an amounts-weighted mortality assumption

will overestimate mortality rates for lives with the greatest pensions. Mortality impacts upon pension lia-

bilities, because these signify the amount released to pay ongoing benefits when a pensioner dies. Fewer

deaths than expected will lead to a deficit, whichmeans that applying an averagemortality assumption leads

to a cross-subsidy between pensioners with lower amounts and those with higher amounts. As more and

more pensioners with lower pensions and higher than average mortality rates die, the total pension plan

gradually accumulates a growing deficit if the basis is not updated frequently.

Such systematic bias can be avoided by grouping lives with similar mortality rates together and applying

these different mortality rates in the liability calculation. As long as each group consists of persons with

27The experience data is not republished herein, but is available at the CPM2014 data tool at http://www.cia-ica.ca/docs/
default-source/2014/214013t5.zip. As the bridging benefits payable to age 65 are unfortunately included while they are in

pay, we restrict our analysis to ages 65 and above (see Appendix G for some related details).
28Reference can be made to Appendix F for details on how to extend the same statistical framework developed above for lives-

based data to amounts-weighted experience, including a continuation of the case study with the CPM2014 dataset illustrating the

graduation of the corresponding amounts-weighted data.
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Figure 16: A/E Ratios and Residuals for the CPM2014 Dataset by Band, Lives Basis
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sufficiently similar mortality, which we call a homogeneous group with respect to mortality, the threat of a

deficit due to inappropriate mortality assumptions is assuaged.

These considerations also give us a method of determining whether the right groupings have been cho-

sen: so long as the residuals for a particular group appear to be randomly distributed, i.e. the observed rates

fluctuate randomly around the estimated mortality rates, the group can be considered homogeneous.

From the residuals under Figure 16, there is little to distinguish the top seven bands (i.e., bands 7 through

13) from each other, and the bottom 4 bands (i.e., bands 1 through 4) also appear to belong together based

on their residuals and A/E ratios. Three aggregate bandings will be considered: Band A: bands 1 through 4,

Band B: bands 5 and 6, and Band C: bands 7 though 13.29 The graduations (again using a Makeham-Perks

model for males of ages 65 to 95) for the three aggregate bands are shown in Figure 18 on both a lives and

an amounts basis. Note that (1) the three bandings each exhibit their own distinct age structure and (2) the

29These choices, particularly the decision to keep bands 5 and 6 in a separate group, are just for illustration, and different group-

ings may be just as or more appropriate.
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Figure 17: A/E Ratios and Residuals for the CPM2014 Dataset by Band, Amounts Basis
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lives and amounts graduations are close, implying homogeneity within the bands.

Conversely, Figure 17 demonstrates that using only a single group and adjusting the mortality for all lives

in the same direction, i.e. by applying an amounts-weighting, introduces bias which may undermine the

purpose of the analysis, i.e. to predict the financial outcome of the group’s survivorship. This is one of the

most basic instances of model risk, which is unfortunately often ignored.
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Figure 18: Central Mortality over Aggregate Amounts Bandings for the CPM2014 Dataset
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10 Conclusion

We have seen how mortality experience is well captured through simple parametric laws, and how those

laws can be fitted to the experience data using maximum likelihood estimation. The resulting modelling

framework allows for a variety of useful statistical tests to quantify how well the model fits the experience

data, particularly the deviance residual analysis. These tests reveal whether the graduation was performed

correctly and also whether the model can be deemed sufficiently complex or additional investigation is war-

ranted. By their nature, parametric models allow for the incorporation of multiple risk factors, while si-

multaneously reflecting their age-dependence. An important advantage of parametric models is that their

parameter estimates have explanatory value and allow an intuitive interpretation.

Graduation of mortality experience by mathematical formula is a valuable tool for any actuary whose

work involves life contingencies. By employing the concepts explored in this paper, hopefully this tool is

made more accessible to practitioners.
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Appendix A Datasets Used as Main Case Study

The data used for purposes of the main case study are based on the original, unaltered dataset reflected in

CIA (2014).

The datasets formales are provided in Table A.1, and for females in Table A.2. There are separate datasets

with the “private sector”, “public sector”, and total experience, both on a lives (unweighted) and amounts

(weighted by pensions-in-pay) basis. The data consists of the deaths counts and the initial exposure.

The datasets were extracted from the data summary tool provided publicly by the Canadian Institute of

Actuaries in 2014.30 The data reflected below is not equivalent to that used in the graduations of the tables

published in CIA (2014). In particular, the graduations published reflect numerous adjustments to the original

datasets. The data summary tool permits direct extraction of the unaltered dataset, with the exception of

the application of an adjustment for incurred-but-not-reported (IBNR) deaths described in CIA (2014). For

producing the datasets below, that adjustment was backed out, by decreasing the death counts (both on lives

and amounts bases) in each individual year of experience by the appropriate factor. That process appears

to have been successful, as the death counts on a lives basis decrease slightly and become integers at each

age, as opposed to the fractional death counts provided in the direct extracts.

Some additional details and comments regarding the adjustments made to the datasets used in gradu-

ating the published CPM2014 tables are found in Appendix G.

The authors of this paper had no part in the collection, validation, or tabulation of the CPM2014 datasets,

and therefore cannot speak to the completeness or appropriateness of the corresponding testing, adjust-

ments, exposure calculation, etc. The datasets are merely meant for purposes of illustration only, and as

such the information should not necessarily be relied upon for any specific purpose.

30Available online at http://www.cia-ica.ca/docs/default-source/2014/214013t5.zip.

©2018 Society of Actuaries
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Appendix B Sample R Implementation

Much of the modelling and graphing in this paper was conducted with R code nearly identical to what is

provided below. The code is provided in the interest of reproducibility, and for interested parties to further

explore the concepts presented in this paper on their own.

What is provided below is simply a sample implementation of how one might approach various items.

While care was taken to ensure that the code works as would be expected over a wide variety of scenarios,

as it was meant to be a relatively basic implementation there are certain to be situations where the code fails

or the result returned not correct. Thus, it should not be relied upon without independent verification.

Where feasible, the results herein were checked against those generated by the group counts module in

Longevitas (Longevitas Development Team (2017)) and the CMI graduation software released alongside CMI

WP 077 (2015). Any errors remain the responsibility of the authors.

The implementation relies mainly on the standard R packages, with the exceptions of the numerical

derivatives package numDeriv (Gilbert and Varadhan (2016) and the package randtests (Caeiro and Mateus

(2014) for direct access to a function providing the precise calculation of the p-value under the runs test.

THE CODE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE
AND NON-INFRINGEMENT. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF
OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

1 ###############################################################################
2 #
3 # GRADUATE.POISSON
4 #
5 # Sample implementation of procedure to graduate mortality experience
6 # grouped by age using the Poisson model and certain mortality laws
7 #
8 ###############################################################################
9

10 # REQUIRED PACKAGES
11 # numDeriv: grad, hessian
12 # randtests: runs.test
13 library(numDeriv)
14 library(randtests)
15
16 ###############################################################################
17 #
18 # CONSTANTS and CONTROL
19 #
20 ###############################################################################
21
22 # If TRUE, model central mortality as m {appox =} mu @ x + 0.5
23 # If FALSE, model central mortality as integrated hazard
24 MODEL.M <- TRUE
25
26 # Initial parameters for fitting laws from Richards (2012)
27 INIT.ALPHA <- -10
28 INIT.BETA <- 0.1
29 INIT.EPSILON <- -10
30 INIT.RHO <- 0
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31
32 # Initial parameters for fitting Gompertz-Makeham - GM(r,s) - family
33 INIT.B1 <- -5
34 INIT.B2 <- 5
35 INIT.BX <- 0
36 INIT.AX <- 0
37
38 # For controlling optimization and fitting procedures.
39 # Setting the relative tolerance (REL.TOLERANCE) so low may be overkill,
40 # but it assisted in testing and comparing results to other implementations.
41 # Forcing the integrated hazard or central mortality (m) to MINIMUM.MU
42 # is meant to avoid errors being raised when a negative value would be
43 # attempted in the fitting process (which can happen when fitting to a
44 # GM(r,s) formula), but should not have impact on the parameters fitted.
45 OPTIM.METHOD <- "BFGS"
46 GRAD.METHOD <- "Richardson"
47 REL.TOLERANCE <- 1e-20
48 MAX.ITERATIONS <- 1000
49 MININIMUM.MU <- 1e-20
50
51 ###############################################################################
52 #
53 # HELPER FUNCTIONS FOR GM(r,s) LAWS
54 #
55 ###############################################################################
56
57 ########################################################################
58 # cheby(N, X) -> Return value of Chebyshev Polynomial of the first
59 # kind of order N evaluated at X
60 ########################################################################
61 cheby <- function(N, X) {
62 if (N == 0) {
63 return(1)
64 }
65 else if (N == 1) {
66 return(X)
67 }
68 else {
69 return(2 * X * cheby(N - 1, X) - cheby(N - 2, X))
70 }
71 }
72
73 ########################################################################
74 # boole(f) -> Numerically approximate integral using integrand f
75 # evaluated over 0 to 1 using Boole's rule
76 ########################################################################
77 boole <- function(f)
78 { (7*f(0) + 32*f(0.25) + 12*f(0.5) + 32*f(0.75) + 7*f(1)) / 90 }
79
80 ###############################################################################
81 #
82 # MORTALITY LAW FUNCTIONS
83 #
84 # Defined by functions for:
85 # - force of mortality (mu)
86 # - integrated hazard function (int)
87 #
88 ###############################################################################
89
90 ########################################################################
91 # Mortality laws from Richards (2012)
92 ########################################################################
93 gompertz.mu <- function(p, x) { exp(p[1] + p[2] * x) }
94 gompertz.int <- function(p, x)
95 { ((exp(p[2]) - 1) / p[2]) * exp(p[1] + p[2] * x) }
96 gompertz <- list(mu = gompertz.mu, int = gompertz.int)
97
98 makeham.mu <- function(p, x) { exp(p[3]) + exp(p[1] + p[2] * x) }
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99 makeham.int <- function(p, x)
100 { exp(p[3]) + ((exp(p[2]) - 1) / p[2]) * exp(p[1] + p[2] * x) }
101 makeham <- list(mu = makeham.mu, int = makeham.int)
102
103 perks.mu <- function(p, x)
104 { exp(p[1] + p[2] * x) / (1 + exp(p[1] + p[2] * x)) }
105 perks.int <- function(p, x)
106 { (1/p[2]) * log((1 + exp(p[1] + p[2] * (x + 1)))
107 / (1 + exp( p[1] + p[2] * x ))) }
108 perks <- list(mu = perks.mu, int = perks.int)
109
110 beard.mu <- function(p, x) { exp(p[1] + p[2] * x) /
111 (1 + exp(p[1] + p[3] + p[2] * x)) }
112 beard.int <- function(p, x)
113 { (exp(-p[3])/p[2]) * log((1 + exp(p[1] + p[3] + p[2] * (x + 1)))
114 / (1 + exp(p[1] + p[3] + p[2] * x))) }
115 beard <- list(mu = beard.mu, int = beard.int)
116
117 makeham.perks.mu <- function(p, x) { (exp(p[3]) + exp(p[1] + p[2] * x)) /
118 (1 + exp(p[1] + p[2] * x)) }
119 makeham.perks.int <- function(p, x)
120 { exp(p[3]) + ((1 - exp(p[3]))/p[2]) * log((1 + exp(p[1] + p[2] * (x + 1)))
121 / (1 + exp(p[1] + p[2] * x))) }
122 makeham.perks <- list(mu = makeham.perks.mu, int = makeham.perks.int)
123
124 makeham.beard.mu <- function(p, x) { (exp(p[3]) + exp(p[1] + p[2] * x)) /
125 (1 + exp(p[1] + p[4] + p[2] * x)) }
126 makeham.beard.int <- function(p, x)
127 { exp(p[3]) + ((exp(-p[4]) - exp(p[3]))/p[2]) *
128 log((1 + exp(p[1] + p[4] + p[2]*(x+1))) /
129 (1 + exp(p[1] + p[4] + p[2] * x))) }
130 makeham.beard <- list(mu = makeham.beard.mu, int = makeham.beard.int)
131
132 ########################################################################
133 # Generalized Gompertz-Makeham Family - GM(r,s)
134 # See Forfar et al. (1988)
135 ########################################################################
136 gmrs.mu <- function(p, r, s, x) {
137 TX <- (x - 70) / 50
138 sum1 <- 0
139 if (r != 0) {
140 for (i in 1:r) { sum1 <- sum1 + p[i] * cheby(i - 1, TX) }
141 }
142 sum2 <- 0
143 if (s != 0) {
144 for (j in 1:s) { sum2 <- sum2 + p[j + r] * cheby(j - 1, TX) }
145 }
146
147 return(sum1 + exp(sum2))
148 }
149
150 gmrs.int <- function(p, r, s, x) {
151 integrand <- function(tt) { gmrs.mu(p, r, s, x + tt) }
152 boole(integrand)
153 }
154
155 gmrs <- function(r, s) {
156 list (mu = function(p, x) { gmrs.mu (p, r, s, x) },
157 int = function(p, x) { gmrs.int(p, r, s, x) } )
158 }
159
160 ########################################################################
161 # law.set(p, law) -> Create force of mortality (mu) and integrated
162 # hazard (int) functions for law using parameters p
163 ########################################################################
164 law.set <- function(p, law) {
165 off <- if(!MODEL.M) 0 else -0.5
166 list(mu = function(x) { law$mu (p, x + off) },
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167 int = function(x) { law$int(p, x + off) })
168 }
169
170 ###############################################################################
171 #
172 # MAIN FITTING FUNCTIONS
173 #
174 ###############################################################################
175
176 ########################################################################
177 # ll(p, f, d) -> Exact log-likelihood function under the Poisson model
178 # Poisson parameter determined by multiplying central exposure by
179 # function f evaluated using the parameters in p and using the data
180 # under d
181 ########################################################################
182 ll <- function(p, f, d) {
183 mu <- pmax(MININIMUM.MU, f(p, d$x))
184 sum(ifelse(d$e == 0, 0, -d$e * mu + d$d * log(d$e*mu) - lfactorial(d$d)))
185 }
186
187 ########################################################################
188 # fit(p.int, f, d) -> Fit model and return key results
189 # Model fitted using mortality law defined by f, data under d, with
190 # p.init the initial parameters for optimization
191 ########################################################################
192 fit <- function(p.init, f, d) {
193
194 ll.fit <- function(p) { ll(p, if (!MODEL.M) f$int else f$mu, d) }
195
196 grr <- function(p) { grad(ll.fit, p, method = GRAD.METHOD) }
197
198 model<-optim(par = p.init, gr = grr, fn = ll.fit, method=OPTIM.METHOD,
199 control = list(fnscale=-1,
200 reltol=REL.TOLERANCE,
201 maxit=MAX.ITERATIONS))
202
203 hess.calc <- hessian(ll.fit, model$par, method = GRAD.METHOD)
204
205 return(list(ll=model$value, pars = model$par, npars = length(model$par),
206 hessian = hess.calc, fun=law.set(model$par, f)))
207 }
208
209 ###############################################################################
210 #
211 # LAW-SPECIFIC FITTING FUNCTIONS
212 #
213 ###############################################################################
214
215 ########################################################################
216 # For laws from Richards (2012)
217 # Order of fitting below chosen to provide optimal stability
218 ########################################################################
219
220 fit.gompertz <- function(d) { fit(c(INIT.ALPHA, INIT.BETA), gompertz, d) }
221
222 # For Makeham, fit Gompertz (ALPHA and BETA) first and then add Makeham
223 # (EPSILON) term
224 fit.makeham <- function(d) {
225 model.gompertz <- fit.gompertz(d)
226 fit(c(model.gompertz$pars, INIT.EPSILON), makeham, d)
227 }
228
229 fit.perks <- function(d) { fit(c(INIT.ALPHA, INIT.BETA), perks, d) }
230
231 # For Beard, fit Perks (ALPHA and BETA) first and then add Beard (RHO)
232 # parameter
233 fit.beard <- function(d) {
234 model.perks <- fit.perks(d)
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235 fit(c(model.perks$pars, INIT.RHO), beard, d)
236 }
237
238 # For Makeham-Perks, fit Perks first and then add Makeham (EPSILON) term
239 fit.makeham.perks <- function(d) {
240 model.perks <- fit.perks(d)
241 fit(c(model.perks$pars, INIT.EPSILON), makeham.perks, d)
242 }
243
244 # For Makeham-Beard, fit Makeham-Perks first and then add Beard (RHO) term
245 fit.makeham.beard <- function(d) {
246 model.makeham.perks <- fit.makeham.perks(d)
247 fit(c(model.makeham.perks$pars, INIT.RHO), makeham.beard, d)
248 }
249
250 ########################################################################
251 # For Generalized Gompertz-Makeham Family - GM(r,s)
252 # Fit Gompertz (s) terms first, and then add non-linear Makeham (r)
253 # terms one-by-one
254 ########################################################################
255 fit.gmrs <- function(d, r, s) {
256 p.init <- if (s == 0) NULL
257 else if (s == 1) INIT.B1
258 else c(INIT.B1, INIT.B2, rep(INIT.BX, s - 2))
259 gmrs.fit <- if (s != 0) fit(p.init, gmrs(0, s), d) else NULL
260
261 if (r == 0) {
262 return(gmrs.fit)
263 }
264 else {
265 for (i in 1:r) {
266 r.pars <- if (i == 1) INIT.AX else c(gmrs.fit$pars[1:(i-1)],
267 INIT.AX)
268 s.pars <- if(s != 0) gmrs.fit$pars[i:(i+s-1)] else NULL
269 gmrs.fit <- fit(c(r.pars, s.pars), gmrs(i, s), d)
270 }
271 return(gmrs.fit)
272 }
273 }
274
275 fit.gm <- function(r, s) { function(d) { fit.gmrs(d, r, s) } }
276
277 ###############################################################################
278 #
279 # RUN GRADUATION and STATISTICAL TESTS
280 #
281 #
282 # Fitting done by function f over data d, with the underlying model
283 # assumed to be Poisson
284 #
285 #
286 # The fitting function f must return a list that includes the following:
287 # - ll: the log-likelihood under the Poisson model
288 # - pars: the fitted parameters
289 # - npars: the number of parameters
290 # - hessian: the Hessian matrix (used to estimate the standard errors)
291 # - fun: the functions defining the mortality law, as determined
292 # by the fitted parameters
293 #
294 # The data to which the mortality law is fitted must include certain
295 # columns or elements:
296 # - x: the ages (x)
297 # - d: the number of deaths at age (x)
298 # - e: the central exposure at age (x)
299 #
300 ###############################################################################
301
302 graduate.poisson <- function(f, d) {
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303 # Set results
304 result <- f(d)
305
306 ll <- result$ll
307 pars <- result$pars
308 npars <- result$npars
309 hessian <- result$hessian
310
311 m <- if(!MODEL.M) function(x) { result$fun$int(x) }
312 else function(x) { result$fun$mu(x + 0.5) }
313 fun <- list(mu = result$fun$mu,
314 int = result$fun$int,
315 qx = function(x) { 1 - exp(-result$fun$int(x)) },
316 m = m)
317 rates <- m(d$x)
318
319 # Calculate standard errors and p-values for parameter estimates
320 std.dev <- sqrt(diag(solve(-hessian)))
321 z.stat <- pars / std.dev
322 p.values <- 2*pnorm(abs(z.stat), 0, 1, lower.tail = FALSE)
323
324 # Calculate deviance and residuals
325 O <- d$d
326 E <- rates * d$e
327 dev <- sum(2 * (ifelse(O == 0, 0, O * log(O/E)) - (O - E)))
328 res <- sign(O - E) * sqrt(2 * (ifelse(O == 0, 0, O * log(O/E)) - (O - E)))
329
330 # Determine dispersion coefficient
331 dis <- dev / (length(d$x) - npars)
332
333 # Chi-squared calculations
334 chi <- sum(((O - E)^2) / ifelse(E == 0, 1, E))
335 chi.p <- pchisq(chi, df = length(d$x) - npars, lower.tail = FALSE)
336
337 # Information criteria
338 aic <- -2 * ll + 2 * npars
339 bic <- -2 * ll + log(length(d$x)) * npars
340
341 # Signs test
342 signs.p <- sum(res > 0)
343 signs.n <- sum(res < 0)
344 signs.a <- if(signs.p <= signs.n) "less" else "greater"
345 signs.test <- binom.test(signs.p, signs.p + signs.n,
346 alternative = signs.a)$p.value
347
348 # Runs test
349 runs <- length(rle(sign(res))$lengths)
350 runs.p <- runs.test(res, "left.sided", 0, "exact", FALSE)$p.value
351
352 # Consolidate main results and statistics
353 details <- list(pars = pars, npar = npars, std.dev = std.dev,
354 z.stat = z.stat, p.values = p.values, ll = ll, aic = aic,
355 bic = bic, dis = dis, chi = chi, chi.p = chi.p,
356 signs.p = signs.p, signs.n = signs.n,
357 signs.test = signs.test, runs = runs, runs.p = runs.p)
358
359 # Calculate 95% confidence intervals
360 lower = log(qpois(0.025, O) / d$e)
361 upper = log(qpois(0.975, O) / d$e)
362 par(mfrow=c(2, 1))
363
364 # Plot crude versus fitted central mortality rates
365 obs <- log(d$d / d$e)
366 mod <- log(rates)
367
368 if(length(mod) == 1) mod <- rep(mod, length(obs))
369 y.min <- min(obs[is.finite(obs)],
370 mod[is.finite(mod)],
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371 lower[is.finite(lower)])
372 y.max <- max(obs[is.finite(obs)],
373 mod[is.finite(mod)],
374 upper[is.finite(lower)])
375
376 plot (d$x, lower, pch = 150, cex=1.25, col = "blue",
377 xlab = "Age", ylab = "log (Central Mortality)",
378 ylim = c(y.min,y.max), axes = FALSE)
379 axis(1, at=c(seq(from=floor(min(d$x)/5)*5,to=ceiling(max(d$x)/5)*5,by=5)),
380 las = 1)
381 axis(2, las = 1)
382 box()
383 points(d$x, upper, pch = 150, cex = 1.25, col = "green")
384 points(d$x, obs, col = "black", cex = 1.2)
385 lines(d$x, mod, col = "red", lwd = 2)
386 legend("bottomright", lwd=c(NA, 2, NA, NA), lty=c(NA, 1, NA, NA),
387 pch=c(1, NA, 150, 150), col=c("black", "red", "green", "blue"),
388 legend=c("Crude","Graduated","97.5th Percentile",
389 "2.5th Percentile"),
390 bty="n", cex=0.7)
391
392 # Plot deviance residuals
393 plot(d$x, res, col = "blue",
394 xlab = "Age", ylab = "Deviance Residual", axes = FALSE)
395 axis(1, at=c(seq(from=floor(min(d$x)/5)*5,to=ceiling(max(d$x)/5)*5,by=5)),
396 las = 1)
397 axis(2, las = 1)
398 box()
399 abline(h = 0, col = "red")
400 abline(h = 1.96, lty = 3)
401 abline(h = -1.96, lty = 3)
402
403 return(list(fun = fun, details = details))
404 }
405
406 ###############################################################################
407 ###############################################################################
408
409 # Sample Data
410 # Deaths and central exposures over ages 50 to 100 for females in British
411 # Columbia in 2011 from the Canadian Human Mortality Database (CHMD)
412 dat.sam <-
413 list (x = seq(50,100),
414 d = c(74, 71, 95, 87, 93, 100, 117, 123, 127, 125, 114, 143, 131,
415 145, 164, 170, 167, 168, 182, 214, 220, 227, 216, 247, 251,
416 254, 295, 316, 331, 360, 372, 422, 444, 489, 508, 531, 593,
417 604, 671, 652, 647, 604, 467, 486, 383, 350, 331, 226, 222,
418 148, 101),
419 e = c(36480.48, 36200.11, 35699.54, 35172.46, 34484.91, 33914.96,
420 33190.50, 32112.22, 30779.34, 29843.52, 29366.44, 28930.82,
421 28453.91, 28413.12, 27003.91, 24287.67, 22254.62, 21462.25,
422 20502.33, 19431.93, 18418.72, 17283.89, 16324.33, 15669.11,
423 15088.03, 14434.73, 13689.43, 13146.68, 12723.69, 12384.01,
424 11983.83, 11432.55, 10718.27, 10083.34, 9463.17, 8855.87,
425 8259.08, 7513.45, 6756.52, 5910.47, 5116.49, 4104.05,
426 3119.46, 2537.77, 1984.37, 1569.65, 1254.94, 938.53, 634.19,
427 403.07, 258.23))
428
429 # Examples of Graduations using Sample Data
430 ## graduate.poisson(fit.gompertz, dat.sam)
431 ## graduate.poisson(fit.makeham.perks, dat.sam)
432 ## graduate.poisson(fit.gm(2,4), dat.sam)
433
434 ###############################################################################
435 ###############################################################################
436 ###############################################################################
437 ###############################################################################
438 ###############################################################################
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Appendix C Identities Regarding the Force of Mortality

The following provides various key definitions, identities, and relationships regarding the key mortality mea-

sures, as well as explaining the main motivations for modelling the force of mortality 𝜇𝑥, or at least the
central death rate 𝑚𝑥, over the probability of death 𝑞𝑥.

Base Identities

The force of mortality 𝜇𝑥, called the hazard rate by statisticians, is formally defined as:

𝜇𝑥 = lim
ℎ→0+

1
ℎ

𝑃 𝑟 (𝑑𝑒𝑎𝑡ℎ 𝑏𝑒𝑓𝑜𝑟𝑒 𝑎𝑔𝑒 𝑥 + ℎ ∣ 𝑎𝑙𝑖𝑣𝑒 𝑎𝑡 𝑎𝑔𝑒 𝑥)

= lim
ℎ→0+

𝑞ℎ 𝑥
ℎ

The integrated hazard function is then defined as:

𝐻𝑥(𝑡) = ∫
𝑡

0
𝜇𝑥+𝑠 d𝑠 (C.1)

The probability of survival from 𝑥 to 𝑥 + 𝑡 is exactly given by:

𝑝𝑡 𝑥 = 𝑒−𝐻𝑥(𝑡) (C.2)

And thus there is a precise relationship between 𝑞𝑥 and 𝜇𝑥:

𝑞𝑥 = 1 − 𝑝𝑥 = 1 − 𝑒−𝐻𝑥(1) = 1 − 𝑒− ∫1
0 𝜇𝑥+𝑡 d𝑡

(C.3)

Definitions, Identities, and Approximations for Grouped Data

When dealing with mortality experience at the level of the individual, the above relationships are sufficient

for statistical modelling purposes. With grouped data, such as the usual case in the construction of standard

base tables where data is aggregated by age and other factors, we need to define some additional quantities:

• 𝑙𝑥: The number of lives alive at age (𝑥)

• 𝑑𝑥: The number of deaths for those aged between (𝑥) and (𝑥 + 1)

• 𝐸𝑐
𝑥: The total time lived between ages (𝑥) and (𝑥 + 1), which can be termed the central exposed-to-

risk/exposure

• 𝐸𝑖
𝑥: The initial exposure at age (𝑥). In the absence of entrants or withdrawals (for reasons other than

death), 𝐸𝑖
𝑥 = 𝑙𝑥

To tabulate the central exposure 𝐸𝑐
𝑥 in practice, days can be counted between the earliest of (1) the ap-

propriate birthday, (2) observation start date, (3) entry date, etc. to the latest of (1) the following birthday,

(2) death date (or exit for reasons other than death), (3) observation end date, etc. The exact tabulation will

depend on the age definition employed, but an age last birthday (ALB) basis is generally the most straight-

forward and effective, and will result in the implied 𝜇𝑥 and 𝑞𝑥 applying at exact age (𝑥).

If the central exposure𝐸𝑐
𝑥 is not available, it can be roughly approximated through the following identity:
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𝐸𝑐
𝑥 ≈ 𝐸𝑖

𝑥 − 𝑑𝑥
2

(C.4)

Now, we can define the central death rate 𝑚𝑥:

𝑚𝑥 = 𝑑𝑥
𝐸𝑐

𝑥
=

∫1
0

𝑙𝑥+𝑡𝜇𝑥+𝑡 d𝑡

∫1
0

𝑙𝑥+𝑡 d𝑡

Under the assumption where 𝑙𝑥 does not change rapidly over the age:

𝑚𝑥 = 𝑑𝑥
𝐸𝑐

𝑥

≈ ∫
1

0
𝜇𝑥+𝑡 d𝑡 = 𝐻𝑥(1) (C.5)

Alternatively, under the assumption where 𝜇𝑥 is constant over the age, taken to be equal to 𝜇𝑥+ 1
2
(i.e.,

∫1
0

𝜇𝑥+𝑡 d𝑡 ≈ 𝜇𝑥+ 1
2
):

𝑚𝑥 = 𝑑𝑥
𝐸𝑐

𝑥
≈ 𝜇𝑥+ 1

2
(C.6)

Note that if we instead work with initial exposure:

𝑞𝑥 = 𝑑𝑥
𝐸𝑖

𝑥
(C.7)

Advantages of Using the Force of Mortality

From equation (C.3), 𝑞𝑥 can be directly returned from 𝜇𝑥, but not the other way around. Indeed, graduating
mortality directly according to 𝜇𝑥, or to 𝑚𝑥, provides numerous advantages over dealing with 𝑞𝑥:

• As noted above, 𝜇𝑥 directly defines 𝑝𝑡 𝑥 and thus 𝑞𝑥, but 𝑞𝑥 does not necessarily return the exact

𝜇𝑥. To see how this one-way relationship can impact estimates in practice, we use a similar example

as provided in Richards (2008) and consider an extreme scenario where there are 100 lives alive at

the beginning of the year and 50 die during the year. No matter when during the year those 50 lives

died, 𝑞𝑥 will equal 50
100 = 0.5. If on average the 50 lives die exactly halfway through the year, then

𝑚𝑥 = 50
50+ 50

2
= 0.6667. However, if all 50 lives die at the end of the January, then 𝑚𝑥 is estimated as

50
50+ 50

12
= 0.9231. Thus, using 𝜇𝑥 or 𝑚𝑥 retains additional information compared to 𝑞𝑥.

• Since 𝑞𝑥 is the probability of those aged (𝑥) dying within the next year, it must tend to 1 as the higher

ages are approached. There are no such restrictions on 𝜇𝑥 or 𝑚𝑥; they can theoretically go well

above 1 without limit. As such, more complex models are required to deal with 𝑞𝑥 than for 𝜇𝑥 or 𝑚𝑥
for higher ages. For example, Figure C.1 illustrates a situation where 𝜇𝑥 is log-linear at all ages (i.e.,

Gompertz’ law), the resulting 𝑞𝑥, as per equation (C.3), will follow a logistic shape. Clearly, the shape

of the force of mortality is much simpler to capture.
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Figure C.1: Force of Mortality (𝜇𝑥) and Mortality Rate (𝑞𝑥) under Gompertz’ Law
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• Whenever 𝑞𝑥 is used, even at the individual level, the initial exposure𝐸𝑖
𝑥 must be invoked. Unlike with

the central exposure 𝐸𝑐
𝑥, it is not possible to deal with entrants during the year, as might be the case

with retirements, the commencement of a new annuity or insurance coverage, or the succession of a

spouse or other beneficiary to a pension or policy, in a completely satisfying manner. It is especially

problematic to capture cases where a life dies within the year of entry. For illustration, say a life en-

ters halfway through the year and dies before the end of the year. In such a situation, 𝑑𝑥 is clearly

incremented by 1. If the life had survived the year, 𝐸𝑖
𝑥 would presumably need to be increased by 0.5.

However, as the life died, if 0.5 is added thenmortality would be overstated (the implied 𝑞𝑥 could even

be brought above 1 in extreme cases); adding 1 to 𝐸𝑖
𝑥 instead is better and the common practice, but

clearly understates mortality (this approach follows from the Balducci hypothesis, which implies that

the force of mortality decreases over a year-of-age) . The use of initial exposure also leads to other

issues, including in situations where there are withdrawals for reasons over than death (such as lapse).

All those issues are avoided if 𝜇𝑥 is used at the individual level, or if the central exposure 𝐸𝑐
𝑥 and 𝑚𝑥

is used for aggregated experience.
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Many of the points listed above relate to one of the most fundamental advantages of central over initial

exposure, which is the ability to properly reflect left-truncation and right-censorship. Experience data is gen-

erally left-truncated, as information on deaths falling before the observation start date is unavailable, as well

as right-censored, as not all lives will be deceased by the end of the study period. These considerations are

especially critical when analyzing mortality at the level of the individual.

As the mathematics are simpler and the limitations fewer, this paper focuses exclusively on working with

𝜇𝑥 or 𝑚𝑥. As such, all references to exposure generally refer to central exposure 𝐸𝑐
𝑥 unless explicitly stated.

As described in detail in Forfar et al. (1988), a similar statistical framework (though invoking a binomial31 as

opposed to a Poisson assumption) can be applied to 𝑞𝑥 instead if absolutely necessary. However, the simple

identities and approximations provided through equations (C.3), (C.4), (C.5), and (C.6) should permit the use

of central exposure in most situations.

Implementation Notes

The approximation under equation (C.5) should generally be considered slightly more statistically valid than

that under equation (C.6). As explicit, closed-form expressions for 𝐻𝑥(𝑡) are available for many of the mor-

tality laws explored in this paper (for instance, see Richards (2012) for integrated hazard functions corre-

sponding to the laws presented therein), the former approximation does not necessarily pose any particular

complications.

Nevertheless, for simplicity and consistency, the results in this paper are calculated using the approxima-

tion under equation (C.6), though𝑚𝑥 is parameterized directly as opposed to𝜇𝑥. The results and conclusions
would not have been materially different had the equation (C.5) been employed instead.

The sample R implementation in Appendix B allows for either approximation to be applied, with the

choice controlled through a single variable.

31Where the conditional likelihood function under the binomial assumption is 𝐿 (𝜃) ∝ ∏
𝑥

𝑞𝑥(𝜃)𝑑𝑥 (1 − 𝑞𝑥(𝜃))𝐸𝑖
𝑥−𝑑𝑥 .

©2018 Society of Actuaries



55

Appendix D The Poisson Model and Overdispersion

Under the assumption that the count of deaths at age 𝑥 follows a Poisson distribution as described under

equation (1), the mean and variance of the corresponding random variable 𝐷𝑥 are assumed to be equal:

E(𝐷𝑥) = 𝑉 𝑎𝑟(𝐷𝑥) = 𝜆 = 𝐸𝑥𝑚̂𝑥 (D.1)

This is a suitable assumption in many cases, but there are certain reasons why the Poisson model may

not perform well in practice. One of the most common such situations is where a large amount of duplicates

is present in the dataset. That is, where an individual has multiple policies, pensions, annuities, etc. and

each is treated separately as opposed to being combined. Ideally, all such duplicates would be identified and

the corresponding records merged. However, that may simply not be possible in some cases, such as when

dealing with grouped data.

Note that the use of amounts-weighted exposure and deaths also creates a form of duplication, as each

unit of exposure and/or death no longer will be independent.

In cases of duplicationor other violations of the Poissonproperties, the variance of𝐷𝑥 is likely higher than

the mean, which is referred to as overdispersion. One way to quantify dispersion within the Poisson model

framework is by dividing the Poisson deviance (or, alternatively and nearly equivalently, the Pearson’s 𝜒2

statistic) by the degrees of freedom, i.e. the number of observations less the number of model parameters.

This ratio can be referred to as the “dispersion coefficient” 𝐷𝐶𝐹:

𝐷𝑒𝑣𝑖𝑎𝑛𝑐𝑒 = ∑
𝑥

2 [𝑑𝑥 × 𝑙𝑜𝑔 (𝑑𝑥
𝑓𝑥

) − (𝑑𝑥 − 𝑓𝑥)] (D.2)

𝐷𝐶𝐹 = 𝐷𝑒𝑣𝑖𝑎𝑛𝑐𝑒
𝑁 − 𝐾

(D.3)

where 𝑁 is the number of observations (ages) and 𝐾 is the number of parameters.

If the dispersion coefficient is close to 1, then there is no real evidence of dispersion. A coefficient under

1 would imply underdispersion (which is relatively rare in practice), while one over 1 implies overdispersion.

If the amount of dispersion is deemed significant, then a different model may be warranted.

If the dispersion is significant butwithin reasonable bounds, then a quasi-Poissonmodelmaymake sense.

Under such a model, the parameter estimates are the same as under the basic Poisson model (i.e., the mean

is the same as under the Poisson), but the p-values and certain statistics are altered by adjusting the variance

by a dispersion factor 𝜓:

E(𝐷𝑥) = 𝐸𝑥𝑚̂𝑥

𝑉 𝑎𝑟(𝐷𝑥) = 𝜓E(𝐷𝑥) = 𝜓 (𝐸𝑥𝑚̂𝑥) (D.4)

If the amount of dispersion is more significant, then it could make more sense to switch from the Pois-

son model to the more general negative binomial model, where the overdispersion will impact both the

parameter estimates and the variance. The negative binomial distribution is a generalization of the Poisson

distribution, which includes an additional parameter so that the variance can vary from the mean. Under a

negative binomial distribution with 𝜓 the dispersion parameter, 𝜆𝑥(𝜃) = 𝐸𝑥𝑚̂𝑥(𝜃), 𝑝𝑥(𝜃) = 𝜆𝑥(𝜃)
𝜆𝑥(𝜃)+𝜓 , and

Γ (⋅) the gamma function, the corresponding conditional likelihood function is:
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𝐿 (𝜃, 𝜓) ∝ ∏
𝑥

Γ (𝑑𝑥 + 𝜓)
𝑑𝑥! × Γ (𝜓)

𝑝(𝜃)𝑑𝑥 (1 − 𝑝(𝜃))𝜓
(D.5)

Now, in the case that there is access to the underlying individual data and there is the ability tomerge any

individual duplicate records, remaining overdispersion could be evidence that the assumption of a Poisson

distribution is problematic for other reasons. Working with mortality at the level of the individual eliminates

any necessity to make an assumption regarding the distribution of deaths at any particular age. Instead, we

can work with the conditional likelihood function defined for each individual 𝑖 who entered the observation

period at age 𝑥𝑖 and was observed for time 𝑡𝑖, where 𝑑𝑖 is 1 if the individual died at age (𝑥𝑖 + 𝑡𝑖) and 0
otherwise:

𝐿 (𝜃) ∝ ∏
𝑖

𝑝𝑡𝑖 𝑥𝑖
̂𝜇 𝑑𝑖
𝑥𝑖+𝑡𝑖

(D.6)

As 𝑝𝑡 𝑥 is precisely determined by 𝜇𝑥 through equation (C.2), the above likelihood function is dependent

solely on the function for the force of mortality 𝜇𝑥 (itself being a function of parameters 𝜃).

Refer to Richards (2008) and Richards et al. (2013) for case studies where survival models are applied to

the mortality experience at the level of the individual.
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Appendix E Technical Notes on Implementing 𝐺𝑀(𝑟, 𝑠)

The 𝐺𝑀(𝑟, 𝑠) family described by equation (8) represents a general form that can capture a wide variety of

mortality patterns, and it has been widely used by the ContinuousMortality Investigation (CMI) in the United

Kingdom. There are a number of technical considerations that should be noted regarding how the𝐺𝑀(𝑟, 𝑠)
curves are fitted in practice.

Most importantly, for fitting purposes and for better scaling and stability of the parameters, the𝐺𝑀(𝑟, 𝑠)
structure relies on polynomials in age based on the transformation𝑇 (𝑥) = 𝑥−70

50 and Chebyshev polynomials

of the first kind defined by 𝐶(𝑁, 𝑋), where when 𝑟 or 𝑠 is equal to 0 the corresponding summation is

completely excluded:

𝜇𝑥 = 𝐺𝑀(𝑟, 𝑠) =
𝑟−1
∑
𝑖=0

𝑎𝑖𝐶(𝑖, 𝑇 (𝑥)) + 𝑒𝑥𝑝 {
𝑠−1
∑
𝑗=0

𝑏𝑗𝐶(𝑗, 𝑇 (𝑥))} (E.1)

Where the Chebyshev polynomials 𝐶(𝑁, 𝑋) are defined recursively as:

𝐶(𝑁, 𝑋) =
⎧{
⎨{⎩

1 𝑁 = 0
𝑋 𝑁 = 1
2𝑋 × 𝐶(𝑁 − 1, 𝑋) − 𝐶(𝑁 − 2, 𝑋) 𝑁 ≥ 2

By employing the Chebyshev polynomial structure, it is easier to fit the parameters, the parameter val-

ues are more consistently scaled, and the values are more stable when additional parameters are added.

Other orthogonal polynomial bases, such as Legendre polynomials or the basis provided through the poly
function in R Core Team (2017), could be used instead to achieve the same benefits. In this paper, the Cheby-

shev polynomials are invoked primarily to maintain consistency with the CMI’s established approach when

graduating mortality tables.

When the mortality probability rates 𝑞𝑥 are required, it is most accurate to determine them through the

precise relationship with 𝜇𝑥 provided through equation (C.3). Explicit formulae for the integrated hazard

function 𝐻𝑥(𝑡) could be determined for the 𝐺𝑀(𝑟, 𝑠) family where 𝑠 ≤ 2, though even then they could be
unwieldy, especially in the presence of the Chebyshev polynomials and the transformation of 𝑥. Sufficiently

precise results can instead be obtained through a numerical integration approach, and the CMI has employed

Boole’s rule for that purpose in recent graduations:

𝐻𝑥(1) ≈ 1
90

(7𝜇𝑥 + 32𝜇𝑥+ 1
4

+ 12𝜇𝑥+ 1
2

+ 32𝜇𝑥+ 3
4

+ 7𝜇𝑥+1) (E.2)

The sample R implementation included in Appendix B is consistent with the above, as is that described

in CMI WP 077 (2015).
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Appendix F On Amounts-Weighted Mortality Experience

As discussed under Section 9, an approximation to the financial impact of amounts (of pension, policy face

value, other benefits, etc.) can be achieved by weighting the deaths and exposure by the pension, annuity,

or policy amount applicable to the underlying lives. So, the amounts-weighted central mortality rate 𝑚𝑎
𝑥 is

simply the ratio of the amounts-weighted deaths 𝑑𝑎
𝑥 to the amounts-weighted exposure 𝐸𝑎

𝑥 , that is:

𝑚𝑎
𝑥 = 𝑑𝑎

𝑥
𝐸𝑎

𝑥
(F.1)

The amounts-weighting is mathematically (and conceptually) equivalent to multiplying the lives-based

𝑚𝑥 by a ratio of average pensions:

𝑚𝑎
𝑥 = 𝑚𝑥 × 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑃𝑒𝑛𝑠𝑖𝑜𝑛 𝑓𝑜𝑟 𝐿𝑖𝑣𝑒𝑠 𝐷𝑦𝑖𝑛𝑔 𝑎𝑡 𝐴𝑔𝑒 𝑥

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑃𝑒𝑛𝑠𝑖𝑜𝑛 𝑓𝑜𝑟 𝑎𝑙𝑙 𝐿𝑖𝑣𝑒𝑠 𝑎𝑡 𝐴𝑔𝑒 𝑥
(F.2)

As the average pension for members dying is expected to be lower than the overall average, the ratio will

generally be ≤ 1 and so 𝑚𝑎
𝑥 ≤ 𝑚𝑥.

We can choose to apply the same mathematical forms described in Section 5 with respect to lives-based

mortality to that under amounts-based weightings. However, in order to produce more meaningfully scaled

values for the residuals and other statistical tests, we need to scale the exposures and/or deaths in a manner

that preserves the crude amounts-weighted mortality but that removes the level of the absolute amounts.

One option is to scale at each individual age, multiplying both the amounts-weighted deaths and exposure by

the ratio of the unweighted to amounts-weighted deaths count. Effectively, the deaths figure simply becomes

the unweighted count (𝑑𝑥) and the exposure is adjusted accordingly to retain the proper amounts-weighted

crude rates. That is the approach that will be taken in what follows, and is also what was invoked in Section 9.

Following the same approach as under Section 5, we can try each model form in turn and determine

which returns the optimal values of the AIC and BIC. As was the case for the lives analysis, the best-fitting

model is found to be a 𝐺𝑀 (1, 3). Details on the corresponding parameter estimates are found in Table F.1.

Table F.1: Parameters under 𝐺𝑀(1, 3) Model for CPM2014 Males on Amounts Basis

Parameter Estimate Standard Error Z p-value Significance

𝑎0 0.001130 0.000331 3.4144 6.3918𝑒 − 04 ∗ ∗ ∗

𝑏0 −4.541924 0.169649 −26.7725 0 ∗ ∗ ∗

𝑏1 6.329917 0.170193 37.1926 0 ∗ ∗ ∗

𝑏2 −0.379542 0.145501 −2.6085 9.0934𝑒 − 03 ∗∗

It is an almost necessary feature of amounts analysis that the experience be more dispersed (see Ap-

pendix D) than it is on a lives basis. That is borne out in the 𝜒2 p-value, which under the amounts-weighted

𝐺𝑀 (1, 3) is a highly-significant 0.000207, compared to the very insignificant 0.5579 it was with the lives

𝐺𝑀 (1, 3). The deviance residuals provided in Figure F.1 are also more dispersed than they were on the lives

basis.
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Figure F.1: Deviance Residuals – Amounts-Weighted Graduation

Age

D
e
v
ia
n
ce

R
e
si
d
u
a
l

55 60 65 70 75 80 85 90 95

-4

-2

0

2

4

The approach explored under Section 9 allows for the most flexible model, though employing amounts-

weighted mortality can be a useful tool. However, analysis should still first be performed on a lives basis, as

doing so helps to gain better understanding of the experience.
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Appendix G Notes on the Datasets Used as Main Case Study

As mentioned in Appendix A, the data used as a case study throughout the majority of this paper repre-

sents the original, unaltered data underlying the CPM2014 set of Canadian pensioner tables published in

CIA (2014), but differs significantly from what was actually used to graduate the published tables. That is

a consequence of numerous adjustments made to the crude data prior to graduation. Few, if any, of these

or comparable adjustments are found in the construction of standard tables produced by the Continuous

Mortality Investigation in the United Kingdom, the Society of Actuaries in the United States, or the Canadian

Institute of Actuaries in Canada for tables released prior to CIA (2014).

There were four main adjustments applied to the data before graduating the CPM2014 tables:

1. Adjustment to deaths for incurred-but-not-reported (IBNR) deaths

2. Adjustment to deaths for assumed mortality improvement

3. Adjustment to exposure and deaths to modify weightings by “industry”

4. Adjustment to deaths and lives-based exposure to “standardize” amounts distribution by age

We will reconcile the most significant of the above adjustments, that being the “standardization” of the

amounts distribution by age. That modification appears to have had the greatest impact on the shape and

the level of the resulting table. Exploring some of the observations that appear to have led to its introduction

are quite instructive.

Before describing the adjustment itself, it is necessary tomake someobservations regarding the evolution

of pension amount by age for the total CPM2014 dataset. The average pension by age is shown in Figure G.1

for males.

From the mid-50s, the average pension-in-pay decreases markedly. Some of the apparent reasons for

that pattern include the following items:

(i) Bridging Pensions: The decrease in pensions between 63 and 65 is largely attributable to the cessation

of bridging pensions. At lower ages in this dataset, much of the exposure is weighted towards “pub-

lic sector” plans, where additional, automatic pensions are provided up to age 65 when government

benefits such as those provided under the Canada Pension Plan or Québec Pension Plan typically com-

mence. Only few “private sector” plans provide such additional pensions automatically, though “level

income” options are relatively common, where the pension payable before age 65 is increased and

that payable after age 65 reduced accordingly on a present value basis. A portion of the decrease may

also be attributable to the commencement of deferred pensions, especially within the private sector.

(ii) Wage Inflation: A significant portion of the decrease past age 65 would be attributable to wages

outpacing increases to the pensions (if any). Even in the case of plans fully indexed to increases in

the Consumer Price Index (CPI), the indexation adjustments would still be expected to be less than the

increase in wages that determine the pension amounts at retirement. Complicating matters further,

not all pension plans included in the CPM2014 dataset are fully indexed; some would be partially

indexed, and some not indexed at all. Pensions in the public sector are much more likely to be indexed

than those in the private sector.

(iii) Socio-Economic Shifts: Even after accounting for the cessation of bridging pensions and the effects

of wage inflation, part of the decrease may be attributable to socio-economic shifts, both within and
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Figure G.1: Average Pensions for Males by Age in Total CPM2014 Dataset
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between plans. For example, part of the reason for the strength of the decrease in the average pension

in the total dataset is a shift towards the private sector at the higher ages.

In terms of the graduation of the crude mortality experience:

• The effect of the bridging pensions under (i) will have absolutely no impact on a lives basis and very

little on an amounts basis. The only impact on an amounts basis is thatmoreweighting thanwarranted

may be applied to ages or plans where bridge pensions are more common. The amounts effect across

ages can be mitigated by adjusting the deaths and/or exposure within each individual age to account

for the average pension at that particular age, as described in Appendix F. However, the inclusion of

bridging pensions may well have implications for the weighting between plans that provide and do not

provide such benefits before age 65. As such, automatic bridging pensions (such as those provided

under “public sector” plans) should almost certainly be excluded for any analysis if possible, though

those created under level-income options are trickier.

• The wage inflation considerations under (ii) also have little effect on the main graduations, especially
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with the mitigation of the impact that can be provided by adjusting for the average pension in the

weightings by age, again as described in Appendix F. However, once again the impact of wage inflation

can also be expected to have the potentially undesired effect of shifting the weightings by amounts

from less generous plans with lesser indexation adjustments to those with automatic adjustments.

The effects of socio-economic shifts are more subtle (especially across a pooled dataset) and muchmore

difficult to attribute between differences in benefit formula, indexation provisions, service periods, and salary

levels, as each has very different implications depending on the particular circumstance of the plan in ques-

tion. However, in general, none of the specific concerns described above should have any bearing on the

resulting best-estimate mortality rates.

However, in CIA (2014) the deaths and exposure were adjusted prior to graduation in such a manner that

the exposure across the thirteen size amount bands at each individual age was adjusted (“standardized”)

to match the distribution across the entire age range. The dataset produced by the adjustment was not

published, but it can be reconstructed by the data tool made available by the Canadian Institute of Actuaries.

The data for the total male dataset before the “standardization” adjustment (but with the adjustment

for IBNR deaths) and with the adjustment incorporated is provided as Table G.1 at the end of the appendix.

The chart provided as Figure G.2 shows the curves fitted with Makeham-Perks over ages 55 to 95 on an

amounts-weighted basis with and without the adjustment.

As would be expected, the adjustment increasesmortality before age 65 (i.e., while the bridging pensions

are still in pay) and correspondingly decreases it after age 65. The distortion to the shape of the graduations

is quite substantial.

While the presence of the bridging pension andwage inflation effects are not particularly problematic for

the graduation, those considerations certainly have implications when attempting to analyze the experience

by pension amount. Those implications are amplified by pension amounts not being revalued to take into

account indexation adjustments (where applicable) to ensure that observed experience is consistent across

all years. By way of example, Figure G.3 provides the crude and graduated rates for males in the second of

thirteen CPM2014’s size amount bands. The group captured before and after the cessation of the bridging

pensions appears to be completely different. This observationwas ourmainmotivation to restrict the analysis

in Section 9 to ages 65 and above.
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Figure G.2: Graduations for Total Male Dataset with and without “Standardization”
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Figure G.3: Crude and Graduated Rates for CPM2014’s Size Band II for Males
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Table G.1: Male Dataset with and without “Standardization” Adjustment

Age
Before Adjustment After Adjustment

Lives Amounts Lives Amounts
Deaths Initial Exp. Deaths Initial Exp. Deaths Initial Exp. Deaths Initial Exp.

50 8.05 1,523.64 164.21 40,296.73 9.60 1,834.18 169.48 40,296.73
51 34.19 2,573.63 780.35 76,295.63 47.87 3,469.61 791.87 76,295.63
52 27.16 4,357.73 486.67 140,919.95 66.76 6,380.04 780.33 140,919.95
53 32.18 7,737.12 723.01 271,290.94 91.41 12,191.23 1,117.31 271,290.94
54 68.38 13,804.35 1,688.00 508,299.94 222.53 22,885.70 3,218.03 508,299.94
55 117.40 27,218.52 3,063.13 970,104.05 334.65 43,711.34 4,760.29 970,104.05
56 180.98 37,712.77 4,971.59 1,337,728.67 474.28 60,263.56 6,823.71 1,337,728.67
57 217.38 45,254.96 6,791.85 1,608,443.22 432.88 72,593.76 7,749.55 1,608,443.22
58 262.31 51,240.61 7,905.39 1,827,856.72 540.14 82,181.80 9,520.21 1,827,856.72
59 329.14 55,714.27 9,258.99 1,979,945.01 786.23 88,979.72 12,088.87 1,979,945.01
60 395.20 61,379.12 11,298.30 2,126,245.80 802.44 95,240.29 13,626.92 2,126,245.80
61 473.97 63,872.04 12,804.34 2,158,791.59 939.94 96,987.93 15,479.09 2,158,791.59
62 525.77 63,261.81 14,424.38 2,084,253.12 954.10 93,805.89 16,161.43 2,084,253.12
63 573.09 63,586.11 14,851.92 2,039,342.38 1,002.59 92,019.21 16,969.00 2,039,342.38
64 647.74 64,562.76 16,992.26 1,869,058.53 886.05 84,283.58 17,681.37 1,869,058.53
65 768.38 71,295.59 15,797.94 1,700,679.15 857.60 77,338.67 16,022.11 1,700,679.15
66 872.67 72,265.38 16,966.70 1,639,990.27 908.51 74,644.97 16,935.33 1,639,990.27
67 1,003.11 70,896.20 18,437.15 1,548,993.29 997.42 70,607.06 18,117.21 1,548,993.29
68 1,175.44 69,866.44 20,254.92 1,464,072.63 1,111.16 67,006.80 19,741.50 1,464,072.63
69 1,172.25 68,890.27 19,666.98 1,382,862.30 1,054.25 63,430.44 18,933.47 1,382,862.30
70 1,356.47 68,275.90 22,231.00 1,315,781.26 1,167.47 60,483.31 21,175.99 1,315,781.26
71 1,441.13 67,592.34 22,235.91 1,248,435.55 1,177.12 57,525.83 20,855.06 1,248,435.55
72 1,592.55 67,496.84 24,177.79 1,197,450.35 1,251.52 55,337.51 22,758.64 1,197,450.35
73 1,877.74 66,870.80 27,079.88 1,140,117.58 1,397.16 52,788.08 24,787.56 1,140,117.58
74 2,047.70 66,019.25 29,580.15 1,089,174.58 1,477.74 50,512.55 26,947.77 1,089,174.58
75 2,237.78 64,607.63 30,742.82 1,029,504.36 1,552.78 47,688.42 28,091.67 1,029,504.36
76 2,371.26 62,543.03 32,171.96 968,669.22 1,612.06 44,861.19 29,912.73 968,669.22
77 2,631.37 60,154.44 37,240.51 901,547.30 1,768.20 41,801.56 35,422.29 901,547.30
78 2,720.53 57,094.10 34,597.24 826,518.43 1,724.66 38,415.11 32,273.10 826,518.43
79 2,885.16 54,062.55 35,738.30 755,843.96 1,761.29 35,137.08 32,700.42 755,843.96
80 2,977.46 50,172.25 36,237.69 683,782.54 1,739.33 31,747.41 31,811.79 683,782.54
81 2,974.13 46,118.03 35,434.89 613,895.41 1,705.99 28,428.00 31,989.71 613,895.41
82 3,044.66 41,665.32 36,714.27 541,750.66 1,724.68 25,062.15 33,548.98 541,750.66
83 3,007.15 37,001.14 34,935.30 466,897.45 1,666.24 21,567.47 32,609.94 466,897.45
84 3,122.01 32,599.46 34,410.40 399,075.35 1,639.30 18,436.92 31,646.49 399,075.35
85 2,860.99 28,016.42 32,853.48 334,400.41 1,518.83 15,470.60 30,933.15 334,400.41
86 2,636.80 23,861.40 28,729.49 277,838.17 1,351.39 12,864.43 27,308.62 277,838.17
87 2,469.07 19,838.07 26,283.22 224,381.67 1,217.32 10,402.34 24,486.15 224,381.67
88 2,264.96 16,233.58 22,994.51 178,291.41 1,081.82 8,295.90 21,608.97 178,291.41
89 1,985.18 12,866.61 20,453.81 139,197.86 964.10 6,491.04 19,572.10 139,197.86
90 1,736.13 10,293.08 17,469.17 109,662.55 827.92 5,112.45 16,765.38 109,662.55
91 1,529.05 7,936.15 15,344.67 83,764.44 707.29 3,909.41 14,323.16 83,764.44
92 1,204.14 5,889.68 12,501.48 61,069.45 576.03 2,841.23 12,412.89 61,069.45
93 949.84 4,277.85 8,582.01 43,422.99 405.77 2,014.39 8,125.15 43,422.99
94 737.23 3,002.27 7,701.07 30,498.48 364.31 1,416.85 7,915.47 30,498.48
95 536.83 2,050.67 5,647.15 20,262.22 263.76 945.48 6,219.31 20,262.22
96 408.68 1,394.67 3,890.83 13,189.58 190.10 615.78 4,204.75 13,189.58
97 258.78 908.26 1,778.71 8,117.89 92.90 382.51 1,516.13 8,117.89
98 187.21 594.67 1,605.01 5,662.13 80.24 265.75 1,580.72 5,662.13
99 129.88 366.00 1,426.78 3,664.57 69.40 177.62 1,503.87 3,664.57
100 65.41 217.00 476.90 1,980.66 29.78 95.05 524.15 1,980.66
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