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Abstract

Mathematicians and actuaries have been applying relatively simple mathematical formulae to model mor-
tality since de Moivre in 1725. Some of these “mortality laws” have stood the test of time and even today
allow mortality experience to be captured across a wide range of ages. In fact, in the United Kingdom stan-
dard mortality tables have long been graduated according to such laws. In this paper, a statistical modelling
framework from first principles is outlined that readily permits mortality laws to be fitted to mortality expe-
rience data. The dataset underlying the 2014 Canadian Pensioners’ Mortality study (CPM2014) is invoked
as a case study relevant to North American actuaries. Parametric mortality laws readily allow risk factors
to be incorporated that describe the mortality of different groups within the experience data in an intuitive
and precise manner. The practitioner can thus graduate mortality tables from heterogeneous datasets and
gain an understanding of the drivers of mortality. The incorporation of risk factors is explored in general,
and in particular in the context of reflecting amounts such as pensions-in-pay, annuity payments, policy face
amount, or other benefit amounts, which are financially significant. The concepts discussed in this paper
permit any actuary concerned with life contingencies to implement a statistical graduation framework in a
simple, accessible manner.

1 Introduction

Any mortality basis used in the valuation of employee pensions and other benefit plans or the pricing or
reserving of life insurance products is a model. It is a model whether calibrated directly to the experience
of the particular group of interest or to that of other relevant populations. A mortality model generally
comprises two main components: (1) the current (baseline) mortality, and (2) the improvement trend. This
paper is concerned with modelling the former, and its purpose is to provide practitioners access to simple but
powerful tools to graduate mortality tables and in the process discover more about the drivers of mortality.

As in any other modelling exercise, the best model for baseline mortality is the simplest that can pro-
duce predictions that are sufficiently accurate for the intended application. We therefore need to be able
to measure the quality and applicability of the model’s predictions. In addition, the model should be built
making as few assumptions about the outcome of the analysis as possible, with the impact of each decision
made along the way measured and documented. To ensure that no bias is introduced, the experience data
to which the model is fitted should not be adjusted, or any data discarded, without good cause.

In what follows, a framework is built up following these principles. Very few, if any, of the methods are
new or original, as the methodology explored is largely the same as that used by the Continuous Mortality
Investigation (CMI) in the United Kingdom in the graduation of their standard baseline tables for the past
thirty years. The majority of the CMI’s methodology is comprehensively documented in|Forfar et al.| (1988),
with other considerations explored over a number of CMI working papers (CMI WP), some of which are
referenced below/[]

However, despite the prevalence of such statistical models in the United Kingdom, many practitioners in
Canada and the United States still gravitate to more traditional, restrictive approaches. The authors believe
that the application of statistical concepts to Canadian and American mortality experience will illustrate how
statistical methods can improve understanding of mortality.

The main focus of this paper is a method known as graduation by mathematical formula, where rela-

TWith few exceptions, CMI outputs since March 2013 are available only to CMI subscribers and may not be distributed freely.
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tively simple and intuitive formulae with only 2 to 5 parameters are fitted to mortality experience through
a statistical model. Figure [I]demonstrates how such a 3-parameter model can capture the shape and level
of a standard mortality table that was constructed by “traditional” means, including the use of Whittaker-
Henderson smoothing at core ages. The standard table invoked is the lives-weighted version of the RP-2014
table for males from the Society of Actuaries (RPH—2014)E|

Figure 1: Fitting a 3-Parameter Formula to the RPH-2014 Table for Males
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Clearly, the 3-parameter formula allows for a very simple model that still captures the same information
in the 51 rates of RPH-2014 table.

The dataset used for the CPM2014 tables from the Canadian Pensioners Mortality study released in 2014

2See |SOA| (2014). For purposes of this illustration, the Makeham-Perks mortality law found in Tableis “fitted” to the loga-
rithm of the graduated RPH-2014 probabilities of death (converted to approximate central rates via m,, ~ —log (1 — q,,)) using
ordinary least-squares regression with no weightings over the entire 60 to 110 age range. The estimated parameter values, fitting
Makeham-Perks directly to m,, are —13.2042 for the “intercept” (a), 0.1269 for the “slope” (8), and —5.1565 for the “Make-
ham” parameter (€). It should be noted that the RP-2014 family of tables were extended to the higher ages with a logistic function
(Kannisto) consistent with the Makeham-Perks shape at those same ages, and thus the good fit at higher ages is not itself unexpected.

©2018 Society of Actuaries
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(see|CIA[(2014)) will be employed as a case study to illustrate the application of the concepts to be examined
below. The grouped data is publicly available and the main subsets of the CPM2014 dataset used in this
paper can be found in Appendix|Al

All graphs below were created with R (R Core Team| (2017)), as was the case for the majority of the
statistical modelling. A version of the R code used for most of the modelling is made freely available as
Appendix[B] Typesetting was done in INTEX. References to the logarithm log are to be taken to refer to the
natural logarithm log, unless otherwise stated.

©2018 Society of Actuaries
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2 Mortality Experience Data
The data typically available for mortality analysis at a grouped level includes the following:

¢ Deaths counts at each age « (denoted d,,)

e Population exposed-to-risk at each age x, or time lived, ideally the central (as opposed to initial) expo-
sure (denoted Ewﬂ

» Benefit/policy amounts

e Additional attributes to allow analysis by risk factors, including gender, product, duration since com-
mencement of benefit or policy, coverage (pensioner or surviving spouse, etc.), health status, smoking
status where available, geographical and socio-economic information, etc.

For grouped data, the crude experience can be expressed in terms of the central death rate m,, = g—m if

the central exposure is used The central death rate m,, is closely related to the force of mortality p,,, and
thus models for m,, can be considered to be ones in continuous time. The relationships between the various
rates, probabilities, and quantities, as well as other considerations regarding central exposure and the force
of mortality, are provided in Appendix[C

Itis crucial that the experience be as free of systematic bias as possible. In terms of the basic experience
such as the deaths counts and exposure measures, that mainly means ensuring that certain individuals are
not systematically excluded, particularly those who died during the observation period. The potential bias
introduced into the risk factors can be especially problematic and subtle. Forinstance, a low pension amount
may well indicate low service, such as may be the case for professionals changing employers frequently, as
opposed to lower salary. Also, the place of residence (the postal code or ZIP code) may be more likely to be
missing for deceased individuals than for survivors.

Addressing potential bias in the experience data is particularly important in relation to risk differentiators
as the mortality differentials between various risk groupings are rarely proportional across all ages. The
impact of nearly every risk differential lessens over age. For example, consider the central death rates m,,
for males and females in Canada in 2011 that are provided in Figure

The difference between the two sexes lessens over age. As age is too vital a factor to ignore, we must
account for the age shape of the impact of a risk factor. In this case, gender and age can either be modelled
separately by splitting the experience data into separate parts for males and females (stratified) or modelled
simultaneously using a multivariate approach. Otherwise, any conclusions drawn from the resulting model
will be systematically flawed. The age structure across risk factors is one of the key motivations for developing
a statistical modelling framework for mortality graduation.

3Central exposure is often denoted E< to distinguish it from initial exposure. The superscript will generally be excluded in this
paper, but references to E',, should be taken to mean the central exposure unless stated otherwise.

“Note that the crude experience would be modelled through the probability of death g, if the initial exposure was instead used.

SSource: [CHMD|(2014)
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Figure 2: Crude Male and Female Mortality for Canadians in 2011
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3 Introduction to Graduation
The main example in this and subsequent sections draws upon the male CPM2014 dataset, on a lives basis

with no further stratification (i.e., across both public and private sectors and any of the other risk factors
available)ﬂ The crude central deaths rates (m,,) for ages 50 through 100 are provided as Figure

Figure 3: Crude Central Mortality Rates under the CPM2014 Dataset on a Lives Basis
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The mortality pattern demonstrates an exponential increase with age. Reverting to a logarithmic y-axis
makes it easier to observe the inherent age structure, which is largely log-linear, as indicated in Figure [4]

The simplest model to capture the patternin Figureis a (log-)linear relationship, i.e. m, = e thr —
log(m,) = o+ Bz with a the “intercept” and [ the “slope” by age. The crude experience appears best
behaved between ages 55 and 95, so analysis will be restricted to that range. To start, we fit the simple

5The data available with respect to the CPM2014 dataset was tabulated on an age nearest birthday (ANB) basis and only the
initial exposure is available. For purposes of this paper, the age definition is effectively ignored, and the central exposure estimated
from the initial exposure and deaths according to equation (C.4).

©2018 Society of Actuaries



211

Figure 4: Crude Central Mortality Rates under the CPM2014 Dataset on Logarithmic Scale
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linear model by least-squares regression without any weightingsﬂwhich resultsin log (m,,) = —11.6253 +
0.1102z, as provided in Figure[5}

Even though it is a very simple model, the straight line appears to fit reasonably well. So, for this set of
crude mortality experience, we appear to have a workable model. However, there is a major drawback to the
least-squares approach; no allowance has been made for the fact that greater statistical credibility applies to
those ages with a larger death count and more exposure.

As the aim is to push the limits of mortality analysis and find methods to measure the reliability of our
results, the following sections will generalize the modelling beyond simple linear regression and introduce a
fully developed statistical framework.

’In this case, minimizing the following function with respect to the parameters a and (8): > [log (%) — (a4 Bgc)] 2

T

©2018 Society of Actuaries
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Figure 5: Unweighted Linear Regression Applied to CPM2014 Dataset
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4 A Statistical Approach to Graduation

In the preceding section, the least-squares linear regression was unweighted. However, conceptually it would
make sense to place more weight on ages where more experience is available. Critically, with unweighted
least-squares the variance of the mortality process is assumed to be constant across all ages (homoscedastic-
ity), which is not realistic as there will be different levels of deaths and exposures at each age, each suggesting
a different variance.

To allow for differing variances by age and achieve a more appropriate fit, the least-squares regression
could be modified to weight the squared differences at each age. In a least-squares context, such a weight
would ideally be greatest where the variance of the quantity under measurement is smallest, which can be
achieved by using a function of exposures or observed deaths. Another approach is to determine natural
weightings following from an assumption regarding the distribution of deaths at a given age, which is devel-
oped in what follows.

The random variable of interest is that for the deaths count at each age, which we will denote D,,. So
long as the lives are independent over an age x, we can assume that the deaths count at each age is Poisson-
distributedﬁwhere the expected value (and variance) in terms of the estimator of m,, m,,, is A = Exmxﬂ

D, ~ Poisson (E, m,) (1)

Under the Poisson assumption, the probability mass function with expected value \ is as follows:

)\k
-
T (2)

The above holds for each age x. Therefore, if we can assume that the observed deaths counts are in-
dependent, multiplying the probability for observing the age-specific deaths count for each age yields the
(conditional) likelihood function, where m,(6) is a function of parameters 6:

Pr(K=k) =e

o) (B, (6))

o 3)

L(0) x H e Eaal
X
To obtain the optimal estimates of the parameters 8 given the observations and model form, we deter-
mine the parameter set that maximizes the value of the above likelihood function, i.e., maximum likelihood
estimation (MLE). Maximizing generally entails taking derivatives, and as the sum rule for derivatives is much
simpler than the product rule, it is almost always more straightforward to maximize the log-likelihood func-
tion{]

1(0) = [=E,m,(0) + d,log (E,m,(0)) — log (d,)] (4)

xT

8Also see|Forfar et al.|(1988) for discussion of some additional considerations. There are a number of situations where the basic
Poisson model may potentially be insufficient, particularly when the variance of D, is greater than the mean, which violates the
Poisson assumption. Refer to Appendix@]for a brief discussion of how to handle such overdispersion.
d

°In this paper, m , is effectively a convenient shorthand for Pyl Alternatively, the ratio m,, = £* could be assumed to refer
to the integrated hazard: fol,uﬁt dt. Refer to Appendixfor additional details
OSince the logarithm is a strictly monotonic function, the set of parameters that maximizes the log-likelihood also maximizes

the likelihood function itself.

©2018 Society of Actuaries



The above can be simplified even further, as d,,! does not depend on m,, and disappears when you take
the derivative, and the log (E, 7, (6)) can be replaced by log (1n,,(6)) for the same reason["]

The Poisson assumption automatically weights based on how much experience is available at each age
of observation and allows the variance to vary across the age range, which is a distinct improvement over
the simple least squares approach.

We continue to use the simple log-linear model for m, and estimate the parameters by maximizing
equation (4). The resulting death rates are shown in Figure[f]and the corresponding deviance residuals in
Figure[7] Deviance residuals represent the deviations between the observed and modelled deaths[™] If the
residuals are randomly distributed according to a standard normal distribution, the residuals will be randomly
scattered about zero, with only 1-in-20 falling outside 4+1.96.

The deviance residuals in Figure [7] appear to be fairly random. Any clear patterns would imply that a
more complex model is necessary to capture the information not explained by our model. However, for the
case at hand this does not appear necessary, and so the simple log-linear model already provides a good fit.

Beyond visual inspection of the fit and residuals, operating under a statistical framework permits us to
apply statistical tests, such as:

« Pearson’s x2 Test: A goodness-of-fit test with the test statistid|assumed to follow a x? distribution
with degrees of freedom equal to the number of observations (number of ages in our case) less the
number of parameters.

¢ Sign Test: Residuals should be equally likely to be above or below zero. The sign test involves calculat-
ing the probability that the observed split between positive and negative residuals follows a binomial
distribution. If that probability is low, say below 0.05 or 0.10, then the residuals potentially would be
considered to be insufficiently random.

¢ Runs Test: Involves calculating the probability of observing a number of runs of positive or negative
residuals given the counts of positive and negative residuals. If the resulting probability of observing
a particular number of runs or fewer in the residuals is quite low (suggesting the presence of too
few runs) or high (suggesting too many runs), the randomness of the residuals might be called into
guestion.

¢ Information Criteria: As mentioned in the introduction, our aim is to retain the simplest possible
model that captures the optimal amount of information from the experience and provides us with
reliable predictions. One measure of “simplicity” is the number of parameters within a model. For

Hn this paper, the “full” log-likelihood function defined by equation is employed as it is generally more conveniently
scaled, and introduces no computational issues. However, the simplified log-likelihood function, which is given by 1 (0) o<
S [-E,m,(0)+d,log(m,(0))] is sufficient in most cases, and also is equivalent to assuming a constant force of mortality

V\G/Eithin individual ages x, as illustrated in|Forfar et al.[(1988).
12 Under the Poisson assumption, with d_, the observed deaths and f, the deaths fitted under the model at a given age, the
deviance residual at that age is calculated as follows, with Olog (0) taken to be zero:

sign (d, — f,) \/2 {dwlog (jf—) —(d, — fx)]

2
By2 =% %, where d_, are the observed deaths (assumed to be independent of each other) and f, the deaths expected

(fitted) unde?the model.

214
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Figure 6: Log-Linear Poisson Model Applied to CPM2014 Dataset
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instance, a mortality table from ages 55 to 95 years based on the crude death rates themselves would
consist of 41 parameters, one for each age. Our log-linear model, which appears to capture all the
same information, requires only two parameters. Thus, the simple straight line “wins” easily.

A more general way of quantifying the preference for simple models with the fewest parameters (i.e.,
parsimonious models), is to balance the goodness-of-fit as expressed through the log-likelihood with
the number of parameters in the model. That is precisely what various information criteria do:

— Akaike’s Information Criterion (AIC): —2[ + 2K, where [ is the maximum of the log-likelihood
under the model and K is the number of parameters.

- Bayesian Information Criterion (BIC): —2[+ log(N ) K, where [ and K are as above and N is the
number of observations (number of ages in our context).

With both the AIC and BIC, the lower the score, the better the relative fit of the model, balanced against
the number of parameters. The BIC penalizes complex models to a greater degree than the AIC so long

215
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Figure 7: Deviance Residuals — Log-Linear Poisson Model
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as there are more than seven observations.

Table[1] provides the values for the above measures and tests for the linear models. The Poisson-based
model yields a much higher p-value under the x? test and a non-significant one under the runs test, suggest-
ing a better fit.

The significance legend herein is the same as that used by R Core Team|(2017) ( * * * for 0.1%, ** for
1%, * for 5%, and - for 10%).

It is important to ensure that extraneous parameters are not included in the models to avoid overfitting
or misleading conclusions. The AIC, BIC, and similar criteria help greatly in that respect, but at the same
time we have to ensure that each individual parameter estimate is statistically significant, which means we
have not just fitted to random fluctuations. That can be determined by calculating the standard errors for
the parameters, calculating the two-way Z statistic and determining the resulting p-values. The relevant
guantities with respect to the log-linear model under the Poisson distribution assumption are provided in
Table[2l Unsurprisingly, both parameters are found to be highly significant.

But what happens if the simple straight line does not capture all the information? The following section

©2018 Society of Actuaries



Table 1: Model Fit under Log-Linear Modelling

Log-Linear Least-Squares

Log-Linear Poisson Model

Parameters 2 2
Intercept (log scale) —11.6253 —11.7109
Slope (log scale) 0.1102 0.1113
Log-Likelihood —204.60
AIC 413.20
BIC 416.63
x? Statistic 51.39 44.99
Degrees of Freedom 39 39

x? p-value 0.0885 0.2355
x? Significance not significant
Positive Residuals 21 20
Negative Residuals 20 21
Sign Test p-value 0.5000 0.5000

Signs Test Significance

not significant

not significant

Runs
Runs Test p-value

Runs Test Significance

14

0.0130

20
0.3789

not significant

Table 2: Parameters under Log-Linear Poisson Model

Parameter

Estimate

Standard Error

p-value Significance

Intercept (o) —11.7109

Slope (/) 0.1113

0.0377

0.0005

0 * ok %

0 * % %

will generalize the form of 1, or m,, beyond a log-linear model.

©2018 Society of Actuaries
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5 Generalizing the Functional Form

As illustrated in the two preceding sections, a log-linear form already fits the experience of Canadian male
pensioners. However, there are many situations where a more complex age shape is warranted, and we may
even be able to do better than the log-linear form for the dataset at hand. It is important to get the general
age shape right before including parameters to describe additional risk factors. As age is such an important
risk factor, any systematic bias that might be present if the age shape is not captured accurately will confound
the impact of other risk factors.

The log-linear form explored above assumes that mortality increases at an exponential rate with age.
That assumption is equivalent to the mortality law put forth in|Gompertz (1825){13]

p, = evthe (5)

The mortality laws explored in this paper are properly expressed directly in terms of the force of mortality
1,.. However, for simplicity we are applying the relevant law to m,, instead. The results would not have been
materially different had an approach applying the relevant law to 1, had been employed. Refer to Appendix
for details on how p,, and m,, relate.

Makeham| (1860) and Makeham|(1867) describe an extension to Gompertz’ law that involves adding a
positive constant to better capture mid-age mortality:

hy = €€+ eH0E (6)

In |Perks| (1932), a logistic extension to Makeham'’s law is first presented, with a very insightful hetero-
geneity/frailty argument for the resulting form conceived subsequently in|Beard| (1959). This quite general
mortality law is referred to as “Makeham-Beard” in|Richards|(2012) and in what follows, and is described by
the intercept and slope parameters a and 3, the “Makeham” parameter ¢, and the “Beard” parameter p:

€€ + ea+ﬁx

Pz = 1 4 eatptpz (7)

In|Richards| (2012), the key mortality laws employed are Gompertz, Makeham, and the simplifications of
the Makeham-Beard law where p = 0 (the “Makeham-Perks” law), € — —oo (the “Beard” law), and where
p = 0and e = —oo (the “Perks” law). A comparison of the force of mortality u,, under certain laws from
Richards|(2012) is given in Figure[8] where in the relevant laws a = —12, 8 = 0.12, ¢ = —6, and the Beard
parameter p set to 1 or —1 as indicated.

The laws shown in Figure [8| are particularly well-behaved and suitable for extrapolation to the higher
and lower ages. However, if the practitioner suspects further structure in the mortality experience data, it
is possible to generalize by replacing the additive Makeham constant and Gompertz linear form with higher-
order polynomials, described in [Forfar et al.| (1988) as the generalized Gompertz-Makeham family of laws

GM(r, s)

1“Gompertz’ original, equivalent expression was more similar to 1, = Bc®, with B and c being positive constants. We adopt
the convention in|Richards| (2012) where when a parameter 8 must be positive, e? = 0is used instead. That aids in fitting the
parameters as they are then free to vary over the entire real line and need not be explicitly constrained. It is also convenient, where
possible, to have the parameters on a logarithmic scale.

BSee Appendixfor details on how the GM (r, s) family is generally fit in practice, which includes fitting to a polynomial
function of a transformation of & as opposed to x* directly.
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Figure 8: Comparison of Main Mortality Laws under|Richards|(2012)
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Note that the Gompertz law under |Richards| (2012) is equivalent to a GM (0, 2), and the Makeham law
is equivalent to a GM (1, 2). Additionally, Makeham'’s second law described in|Makeham|(1890) is the same
asa GM(2,2). Table[8|summarizes the various laws.

The CMI has utilized some form of the GM (r, s) family in the graduation of mortality tables over key ages
for many years. The most recent standard tables constructed from the experience of employer-sponsored
pension plans in the United Kingdom (the “S2” Series) mainly relied upon GM (1, 3) or GM (0, 4) forms (see
CMI WP 071/(2014)). The most recent annuitant standard tables (the “08” Series) opted for simpler forms,
effectively GM (0, 3), GM(0,4), or GM (0, 5), as found in|CMI WP 078 (2015). In all cases, relatively few
parameters are involved.
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Table 3: Selected Mortality Laws

Richards (2012) GM(r,s) Force of Mortality 1,

Gompertz GM(0,2) eOHhT
Makeham GM(1,2) ef + e thT
Perks %
Beard Hi‘i%
Makeham-Perks %
Makeham-Beard %
r—1 Sf bzl
GM(r,s) > a;z"+ ei=0

=0

In North America, while graduations based on Makeham’s original laws were once common, graduation
by mathematical formula has fallen out of favour. One relatively recent example is found in|Panjer and Tan
(1995) for Canadian insured mortality for the period from 1986 to 1992. Makeham’s second law (i.e., a
GM(2,2)) is invoked to graduate the experience over ages 40 to 99 for males and 44 to 99 for females.
However, the fit is made using least-squares regression weighted with the exposure at the relevant age as
opposed to maximum likelihood estimation.

Continuing the North American perspective, [Chan and Panjer (1979) describe a method of employing
maximum likelihood estimation to graduate mortality according to laws such as Gompertz and Makeham.
The Poisson assumption is not invoked, as the paper focuses on building the likelihood function up from
the level of the individual. As shown in|Forfar et al.| (1988), maximizing the likelihood function developed
for grouped data in that paper results in equivalent parameterizations to maximizing the Poisson likelihood.
Tenenbein and Vanderhoof| (1980) suggest that there are many advantages of working with mathematical
models of mortality and presents some extensions of Gompertz and Makeham.

To determine whether one of the model forms in Table [3]may perform better than the Gompertz model
that we have already examined, we fit each law one-by-one, and find values of the AIC and BIC. The results
are tabulated in Table[4]

There is not much to separate the “top” models, but the 4-parameter GM (1, 3) slightly edges out the
others under both measures. The parameter estimates under the GM (1, 3) model (as provided through
equation (8)) are provided in Table[5] along with the standard errors, the Z score, the p-value, and the signif-
icance.

The fit and residuals are not shown as there is little change from that of the Gompertz. However, given
that the GM (1, 3) does appear to result in a slightly better-fitting model with parameter estimates all signif-
icant, we can consider it as the final model for fitting the CPM2014 male dataset on a lives basis.

220
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Table 4: Measures of Model Fit for Males in the CPM2014 Dataset under Various Laws

Law Parameters AIC BIC

Gompertz / GM (0, 2) 2 413.20 416.63
Makeham / GM (1,2) 3 415.03 420.17
Perks 2 453.30 456.73
Beard 3 412.40 417.54
Makeham-Perks 3 411.64 416.78
Makeham-Beard 4 407.47 414.32
GM(0,3) 3 414.62 419.76
GM(0,4) 4 407.86 414.72
GM(0,5) 5 409.65 418.21
GM(1,3) 4 407.34 414.20
GM(1,4) 5 409.34 41791
GM(2,2) 4 407.61 414.47
GM(2,3) 5 409.23 417.80

Table 5: Parameters under GM (1, 3) Model for CPM2014 Males

Parameter Estimate  Standard Error Z p-value Significance
ag 0.001440 0.000412 3.4944  4.7506e — 04 S
b —4.474429 0.172141 —25.9928 0 * % %
b, 6.129081 0.173795 35.2662 0 S
bs —0.466494 0.146658 —3.1808  1.4686e — 03 Hok

It should be noted that logistic formulae tend to become the better fitting models at higher ages and this is
especially so if the underlying population is particularly heterogeneous. To illustrate, we can invoke the frailty
arguments explored inBeard| (1959) and Richards|(2008). Assume three risk groups are represented in the
population, the mortality for each being captured through Makeham’s law with § = 0.13 and e = —5, and
with the “intercept” a being —12, —13, and —14 for the high, middle, and low mortality groups, respectively.
Now, we simulate a process where 50,000 individuals commence a benefit or policy at exact age 50 at the
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beginning of each year, where 15,000 (30%), 27,500 (55%), and 7,500 (15%) are assumed to fall within the
high, middle, and low mortality groups, respectively. For each individual the remaining lifetime is simulated
directly using the cumulative distribution function, as described in|Richards|(2012)). The simulated experience
in the 61° year of this process in then tabulated and treated as “crude experience” in Figure@

log (Central Mortality)

-4

Figure 9: lllustration of the Frailty Argument
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The simulated experience resulting from combining the three risk groups is clearly not well explained
by any of the Makeham laws. In fact, the best fitting model is a Makeham-Beard (with parameters for the
force of mortality u,, of @« = —12.0251, 8 = 0.1213, ¢ = —5.0800, and p = 0.7588 with the particular
set of simulated data). This is a basic illustration of the frailty argument for the Beard parameter. Effectively,
with advancing age the survivors tend more and more towards to lower mortality groups, creating the Beard

shapeE

%The frailty result is developed mathematically in[Richards|(2008), where it is demonstrated that a Makeham-Beard form at the
population level is obtained in a scenario where the underlying individuals” mortality patterns follow a Makeham form where e is
drawn from a gamma distribution.
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The illustrative simulation described above provides a useful intuition for the Beard parameter and shape.
A positive value of the Beard parameter thus can be directly associated with heterogeneity within a pool of
mortality experience data. In some applications, it will not be possible to identify the different risk groups that
are contributing different mortality patterns to the overall experience, such as the study of population level
mortality or aggregated within an industry experience study. However, in instances where the practitioner
has access to additional information on the lives in question and where it is possible to model the different
risk classes within the overall model, this will be preferable to the aggregate model with the accompanying
heterogeneity. Using an aggregate model without accounting for the heterogeneity always introduces distri-
bution risk, i.e. the risk that the distribution of the group being modelled is different from the group which
supplied the experience data. In addition, capturing the shape of the heterogeneous experience may require
a complex functional form, if a suitable one can be found at all. Incorporating differentials into the model
or stratifying the dataset according to key risk classes will often allow a simpler underlying structure to be
employed. Section[8]introduces risk factors in the context of our case study.
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6 Extension to Higher & Lower Ages

It is often necessary to extend the graduated rates to older and younger ages where there is insufficient
experience. Extending mortality rates to higher ages is especially important for annuitant and pensioner
tables. Methods for extending the tables to higher ages include the logistic extension, akin to the Perks or
Beard laws in Table[3] a polynomial extension (usually cubic), or to gradually converge towards a population
table. Along a different vein, |Li et al.|(2008) applies extreme value theory to model mortality at the highest
ages.

CMI WP 085/ (2015) and |CMI WP 100 (2017) provide an excellent overview of the various approaches
available for extension to higher ages, including a summary of which approaches have been used in standard
tables in the UK, the United States, and Canada. Those working papers also provide a summary of recent
research into mortality patterns at high ages. Both are publicly and freely available.

Ages below those at which there is ample experience can actually pose even greater problems than the
ages above. In some cases, it may not make sense to extrapolate to younger ages as the younger age mortality
applies to a different population. For example, pensioner mortality rates in the 50s and early 60s only capture
the portion of the pension plan’s membership who have retired. The portion still in active service are likely
to be in better health than their counterparts who have already retired. Therefore, extending the mortality
rates to the younger ages based solely on the experience of retired members may not be appropriate. In
such a situation, a separate mortality table would ideally be graduated for the active members, as was the
case for the RP-2014 tables. The large differences between the active and healthy annuitant (approximate)
central mortality rates under the lives-weighted versions of the RP-2014 tables for males (i.e., RPH-2014) are
illustrated under Figure

If the rates are to be extended to the lower ages, some version of Makeham’s law (ora GM (r, s) law), or
otherwise some form of polynomial, will likely prove satisfactory in many situations. For instance, extensions
using GM (r, s) forms were adopted for the “S2” series of pensioner tables in the UK (see |CMI WP 071
2014)).

One of the advantages of graduating mortality tables by mathematical formula is that certain laws such
as Makeham-Perks or Makeham-Beard in Table [3| automatically extend to both younger and higher ages
in a manner consistent with the underlying experience (assuming that the populations to which the ex-
tended rates will be applied are consistent with the population included in the graduation). For example, the
Makeham-Perks law can be applied to the lives-based (unweighted) CPM2014 dataset for males explored
above across the 55 to 95 age range and the resulting function allowed to naturally extend over the 50 to
110 range. The fit of the Makeham-Perks law over 55 to 95 is good, and provides for a particularly clean and
smooth extension.

The fit and extension is provided in Figure[11] with the parameters estimated as a« = —12.6846, 3 =
0.1242, and e = —6.6287. The 97.5!" and 2.5t percentiles (i.e., the higher and lower bounds of the 95%
confidence intervals) for the central mortality rates at each age based on the raw data are also provided for
contextFE] The fit appears more than adequate at all ages, including the extensions at the lower and higher
ages, and thus the Makeham-Perks model could be considered as an alternative to the GM (1, 3) model

Yseelsoal(2014)

8The percentiles are calculated directly, by determining the corresponding percentile from the inverse of the Poisson cumulative
distribution function for the deaths count. The mean of the Poisson is equal to the observed deaths (the d, for that age), and the
result is then divided by the exposure E_ at the age.
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Figure 10: Comparison of the Healthy Annuitant and Employee (Active) RPH-2014 Rates
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selected above where simple, reasonable extensions are desired.

A disadvantage of employing GM (r, s) forms involving higher-order (i.e., greater than first degree) poly-
nomials is that extrapolations outside the age range graduated are generally poorly behaved. Thus, when
such higher-order polynomials are invoked, extensions must be made in subsequent steps following gradu-

ation.
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Figure 11: Graduation and Extension of CPM2014 Male Experience Using Makeham-Perks
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7 Smoothing through P-splines and Similar

The mortality laws discussed above are indeed very flexible and powerful, but there may be instances where
the practitioner desires even greater flexibility. There are many smoothing techniques available. One which
has become very popular in actuarial applications uses B-splines (basis splines) with difference penalties, re-
ferred to as P-splines. P-splines were introduced by [Eilers and Marx (1996) and were extended to modelling
two-dimensional mortality data by|Currie et al.|(2004). The basic concept is to carry out a regression to gen-
erate a smooth function by “splicing together” piecewise polynomials at certain intervals, with the meeting
points called knots["]

We can find an expression for log(u,,) using B-splines B; (x) with coefficients 6, as follows:

log (k) = ZeiBi(f’«") )
=1

The number of splines required (s) is determined by the knot-spacing chosen and the age range under
consideration. The B-splines B;(x) are usually piecewise cubic polynomials.

By adding a penalty function to the log-likelihood we can force the splines into a chosen level of smooth-
ness. That penalty function can be defined in terms of finite differences of order N with respect to the
coefficients 6, as:

ssN (N [N N 2
(Z (]) (-~ 6i+j) (10)
i=1 \j=0

For example, with the common choice of finite differences of order two (N = 2) the penalty function
takes this form:

P(0) = (0; — 205 + 05)° + ... + (6,5 — 20, +0,)?
The penalized log-likelihood function in terms of 8 can then be expressed by a base log-likelihood function
1(0) (say as determined under equation ) and a smoothing parameter X:
1
1(6) = U(6) — SAP(6) (1)

The system of B-splines returned by maximizing equation is referred to as a penalized B-spline, or
a P-spline. The A parameter can be selected arbitrarily or with reference to a measure that balances the
absolute log-likelihood with the effective number of parameterg”’|in the model such as the AIC or BIC.

With P-splines, the key modelling decisions are with respect to the knot-spacing, the finite difference
order, and the smoothing parameter \.

In this paper, the knots are constrained to be equidistant apart, which simplifies the required calculations. However, the knot
spacing need not be equidistant. Early work involving applying splines to mortality experience focused on attempts to determine
the optimal number of splines and corresponding spacing, which the use of P-splines effectively circumvents at the cost of the
introduction of the penalty term to the log-likelihood function.

2ONote that by introducing the penalty function, we are reducing the degrees of freedom. This means that the greater the
penalty, the lower the “effective” number of parameters.

> 27
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|II

The mortality (whether the g,, m,, or a logarithm of either) can also be fitted using a “mechanica
method that precedes modern statistics that is usually referred to as Whittaker-Henderson. This method
of graduation was first presented in Whittaker| (1923). Retaining much of the parameterization above, the
Whittaker-Henderson smoothing of the crude values y, (whether those be m,, the g,, or other) over k
ages, subject to smoothing parameter A, optional weights w,,, and finite difference order N, are those 6,
that minimize the following expression:

k k—N )
D ow, (=0, + A (A)) (12)
=1 =1

Equation is reminiscent of the penalized log-likelihood function under equation (11). Indeed, as
discussed in|Currie| (2015), if the knot-spacing in a P-spline is set equal to a single year-of-age, the order of
the underlying B-splines is set to zero, and the Poisson log-likelihood function replaced with the (potentially
weighted) least-squares difference, the Whittaker-Henderson result is equivalent to this special case of P-
splines.

Let us compare the graduations obtained through the graduation by the mathematical formula process
above to what we would get using other approaches. Figure [12] compares the resulting graduations under
three methods for the CPM2014 male dataset with no further stratification on a lives basis:

* Mathematical Formula: The GM (1, 3) curve developed under Section[5]

. P-splinesE-] Modelling log (m,,), using equidistant knot spacing of 10 years (requiring seven piecewise
cubic B-splines over the 55 to 95 age range), a finite difference order (IN) of 2 for the penalty function,
and a smoothing parameter (A) of 350. The value for A was chosen as the approximate value of the
smoothing parameter found to minimize the BIC under the implementation employed.

. Whittaker-HendersonF_Z] This is the method that was used to graduate the published CPM2014 ta-
bles. For consistency, we will also model log (m,,) over ages 55 to 95 with Whittaker-Henderson. The
weights are based on the deathstwith the sum of the weights set equal to 41 (the number of ages),
the smoothing parameter (A) to SOOand the finite difference order (V) to 3.

As can be clearly seen, the three approaches result in nearly identical graduations. However, graduating
by mathematical formula results in a model with only 4 parameters, as compared to 7 (physical) parame-
ters for the P-splines and 41 “parameters” (being the 41 graduated m,) under Whittaker-Henderson. The
smoothing mechanisms under the P-splines and Whittaker-Henderson significantly decrease the effective
dimension (or effective degrees of freedom) of the resulting modelF_gl but a model with fewer physical pa-

21The P-splines are fitted using the R package MortalitySmooth (Camardal (2012)), using the function Mort1Dsmooth with the
ndx parameter (the number of internal knots less one) set equal to 4 in order to achieve 10-year knot spacing over the 40 ages.

22The Whittaker-Henderson method is solved in R code in terms of crude observations y, smoothing parameter L, and finite
difference order N. By setting Id = diag(length(y)) as the identity matrix, D = diff(Id, diff = N) the finite differencing matrix,
and W the vector of weightings, the smoothed results under Whittaker-Henderson are obtained directly through:

solve (W Id + L * crossprod (D), W y)

2Using deaths as the weight is a reasonable approximation to assuming Poisson-distributed deaths counts.

?Note that although the P-spline and Whittaker-Henderson approaches have a similar penalty term, under the implementations
herein a smoothing parameter A\ of 500 for Whittaker-Henderson represents a significantly higher degree of smoothing than a A of
500 under the Poisson P-spline framework.

%SeelEilers and Marx|(1996) and|Currie et al.|(2004) for details. For example, the effective dimension of the P-splines fitted here
is approximately 3.7, while under the Whittaker-Henderson approach it is about 6.1.
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Figure 12: Graduated CPM2014 Central Mortality Rates for Males under Various Methods
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rameters with some intuitive interpretations provides considerable benefit when desiring to incorporate risk
factors. Those advantages will be introduced in the following section.
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8 Reflecting Risk Factors

To this point in the paper, we have limited our modelling to the CPM2014 male-only data on a lives-basis.
However, age and gender are not the only risk factors that have an influence on mortality. Therefore, we need
to be able to analyze the mortality differentials arising from other key risk factors. In general, it is critical to
capture factors that are financially significant, which often will include the benefit amount, e.g. pension,
annuity, sum insured, etc. As already discussed with respect to gender, the mortality differential will likely
depend on age.

One of the potential risk factors available in the CPM2014 dataset is whether a plan covers the employees
of corporations in the “private” or the “public” sector. At least in this dataset, the plans considered “private”
are mainly blue-collar, while the “public” plans mainly cover public administration and education employees,
meaning that the public sector mortality experience is expected to be lighter than the private sector expe-
rience. Figure [13]provides the raw central mortality rates for males in the two sectors on a lives basis, with
separate Makeham-Perks (chosen for simplicity) curves fitted over ages 55 to 95 and then extended to the
lower and higher ages.

The Makeham-Perks parameters for the private, public, and total graduations are provided in Table[6] In
all cases, the three parameters are highly significant.

Table 6: Makeham-Perks Parameters for Male Dataset Split by Sector

Dataset «@ B €

Private —12.621360 0.123481 —5.395322

Public —13.207571 0.129613 —6.577481

Total —12.684571 0.124192 —6.628663

The above is an example of stratification, where we split the experience across various classifications (in
this case, we split males into “sectors”) and then model the subgroups independently. However, we could in-
stead attempt to model the experience of the risk groupings simultaneously, with certain parameters shared
between the groupings but allowing the others to vary. To illustrate that concept, we turn to the female
experience in the CPM2014 dataset, the corresponding raw experience split by sector found in Figure[14}

There is much less experience for females in the private sector than the public, particularly at lower
ages. However, the experience across the two sectors does appear to converge well. Fundamentally, we
have three choices: (a) we could model the total experience, without any distinction between the sectors,
(b) we could stratify the female experience by sector and model the experience completely independently
as we did above for the males, (c) or, finally, we could model the experience simultaneously, with certain
parameters shared between the sectors and the remainder allowed to vary. In this case, if a Makeham-Perks
model is again chosen, we could have the Makeham (€) parameter shared between the female private and
public experience with the intercept («) and slope (8) parameters allowed to vary by sector, or have the
intercept and slope shared but with the Makeham parameter varying by sector.

For purposes of this analysis, equation must be modified to allow for the female public and private
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Figure 13: CPM2014 Male Experience and Graduation across the Private & Public Sectors
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experience to be separately consideredEThe resulting AIC and BIC scores under the four options considered
are provided as Table[7]

The 4-parameter approach, where the o and (3 parameters are shared but the € allowed to vary, results
in the lowest AIC and BIC. The resulting parameters are shown in Table[8] where e is the Makeham parameter
for public sector females (the baseline) and € + e:PRIVATE that for those in the private sector. The fitted
curves and extensions are provided as Figure [I5] The interaction between the Makeham parameter and
sector captures the apparent non-linear convergence between the public and private sector female mortality.

Similar logic as the above allows us to incorporate any risk factor available in a dataset. One of the
most important factors is often the benefit amount applicable to an individual. Incorporating amounts in the
analysis is discussed in the following section.

%specifically, the log-likelihood function in equation (4) is replaced by [P%(9P%) + [P"(6P7), where the parameter sets, death
counts, and exposures relate to the public sector for I[P* and 8P and the private sector for [P” and 6P".
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Figure 14: CPM2014 Female Crude Experience across the Private & Public Sectors
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Table 7: Measures of Model Fit for Female CPM2014 Dataset under Four Options

Model Parameters  AIC BIC

No Distinction 3 794.34 801.56
All Parameters Varied 6 697.26 711.70
All but Makeham Varied ) 704.09 716.12
All but Makeham Shared 4 696.51 706.13

It should be noted that models applied to grouped data work well only if a small number of risk factors is
considered. Incorporating a wider set of risk factors is possible at the level of the individual. For case studies
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Table 8: Makeham-Perks Parameters for Female Dataset

Parameter Estimate Standard Error Z p-value Significance
«a —14.763021 0.110190 —133.9776 0 * % *
B 0.142683 0.001286 110.9788 0 * % *
€ —6.290117 0.063950 —98.3594 0 * % *
e:PRIVATE  1.033823 0.078870 13.1079  2.9658e — 39 * % ok

Figure 15: Graduation and Extension of CPM2014 Female Rates Split by Sector
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of applying similar concepts on an individual basis, the reader is referred to |Richards| (2008) and |Richards
et al.|(2013).
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9 Concerning Amounts

In actuarial practice, the aim of mortality analysis is to quantify the financial impact of death or survivorship.
Therefore, the mortality rate for an insured life or the survival probability of an annuitant or pensioner will
be multiplied by a sum at risk or benefit amount to calculate the resulting payout of a life insurance policy,
annuity, or pension.

In addition to this, a correlation is observed between benefit amount or sum insured and mortality. Mor-
tality often is lighter for those with higher of these amounts, and this skew in the mortality by amounts
has direct financial implications. To illustrate the point, the experience across the thirteen amounts bands
available within the CPM2014 dataset for males will be analyzed ["’]

We apply a lives-based Makeham-Perks model to the CPM2014 male dataset for ages 65 to 95. This
constitutes the expected mortality basis for the actual-to-expected (A/E) ratios across all thirteen pension
amount bands as provided under Figure[16] along with the corresponding deviance residuals. The deviance
residuals are scaled to reflect the amount of experience available under each band, and can effectively be
considered standardized or weighted versions of the A/E ratios.

Figure [16] implies that using the average lives-based mortality rates graduated without accounting for
mortality differentials by amounts would lead to an underestimation of mortality for lives with lower than
average amounts and an overestimation of mortality for lives with higher than average amounts. Considering
a financial application such as life insurance or pensions, the lives with the greater amounts also have a
greater financial impact. Therefore, on an amounts-weighted basis, the overall impact of mortality is lower
than on a lives-weighted basis; in other words, weighting the mortality rates by sum assured or benefit
amount leads to a lower average rate of mortalityEg]

As seen in Figure the simple amounts-weighting shifts the average mortality lower, but does not
overcome the bias that the mortality of lives with lower than average amounts will be underestimated and
overestimated for lives with higher than average amounts. For short-term applications, such a crude ap-
proximation may be sufficient. It must always be top of mind that the best model is always the simplest that
manages to do the job. However, there are instances in which it will be necessary to improve upon the model
and increase its complexity to make it useful.

Consider pensions for example. As stated above, applying an amounts-weighted mortality assumption
will overestimate mortality rates for lives with the greatest pensions. Mortality impacts upon pension lia-
bilities, because these signify the amount released to pay ongoing benefits when a pensioner dies. Fewer
deaths than expected will lead to a deficit, which means that applying an average mortality assumption leads
to a cross-subsidy between pensioners with lower amounts and those with higher amounts. As more and
more pensioners with lower pensions and higher than average mortality rates die, the total pension plan
gradually accumulates a growing deficit if the basis is not updated frequently.

Such systematic bias can be avoided by grouping lives with similar mortality rates together and applying
these different mortality rates in the liability calculation. As long as each group consists of persons with

2’The experience data is not republished herein, but is available at the CPM2014 data tool athttp: //www.cia-ica.ca/docs/
default-source/2014/214013t5.zip. As the bridging benefits payable to age 65 are unfortunately included while they are in
pay, we restrict our analysis to ages 65 and above (see Appendixfor some related details).

28Reference can be made to Appendixfor details on how to extend the same statistical framework developed above for lives-
based data to amounts-weighted experience, including a continuation of the case study with the CPM2014 dataset illustrating the
graduation of the corresponding amounts-weighted data.
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Figure 16: A/E Ratios and Residuals for the CPM2014 Dataset by Band, Lives Basis
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sufficiently similar mortality, which we call a homogeneous group with respect to mortality, the threat of a
deficit due to inappropriate mortality assumptions is assuaged.

These considerations also give us a method of determining whether the right groupings have been cho-
sen: so long as the residuals for a particular group appear to be randomly distributed, i.e. the observed rates
fluctuate randomly around the estimated mortality rates, the group can be considered homogeneous.

From the residuals under Figure[16] there is little to distinguish the top seven bands (i.e., bands 7 through
13) from each other, and the bottom 4 bands (i.e., bands 1 through 4) also appear to belong together based
on their residuals and A/E ratios. Three aggregate bandings will be considered: Band A: bands 1 through 4,
Band B: bands 5 and 6, and Band C: bands 7 though ISFE] The graduations (again using a Makeham-Perks
model for males of ages 65 to 95) for the three aggregate bands are shown in Figure [18on both a lives and
an amounts basis. Note that (1) the three bandings each exhibit their own distinct age structure and (2) the

2These choices, particularly the decision to keep bands 5 and 6 in a separate group, are just for illustration, and different group-
ings may be just as or more appropriate.
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Figure 17: A/E Ratios and Residuals for the CPM2014 Dataset by Band, Amounts Basis
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lives and amounts graduations are close, implying homogeneity within the bands.

Conversely, Figure[17]Jdemonstrates that using only a single group and adjusting the mortality for all lives
in the same direction, i.e. by applying an amounts-weighting, introduces bias which may undermine the
purpose of the analysis, i.e. to predict the financial outcome of the group’s survivorship. This is one of the
most basic instances of model risk, which is unfortunately often ignored.
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Figure 18: Central Mortality over Aggregate Amounts Bandings for the CPM2014 Dataset
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10 Conclusion

We have seen how mortality experience is well captured through simple parametric laws, and how those
laws can be fitted to the experience data using maximum likelihood estimation. The resulting modelling
framework allows for a variety of useful statistical tests to quantify how well the model fits the experience
data, particularly the deviance residual analysis. These tests reveal whether the graduation was performed
correctly and also whether the model can be deemed sufficiently complex or additional investigation is war-
ranted. By their nature, parametric models allow for the incorporation of multiple risk factors, while si-
multaneously reflecting their age-dependence. An important advantage of parametric models is that their
parameter estimates have explanatory value and allow an intuitive interpretation.

Graduation of mortality experience by mathematical formula is a valuable tool for any actuary whose

work involves life contingencies. By employing the concepts explored in this paper, hopefully this tool is
made more accessible to practitioners.
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Appendix A Datasets Used as Main Case Study

The data used for purposes of the main case study are based on the original, unaltered dataset reflected in
CIA (2014).

The datasets for males are provided in Table[A.1] and for females in Table[A.2} There are separate datasets

with the “private sector”, “public sector”, and total experience, both on a lives (unweighted) and amounts
(weighted by pensions-in-pay) basis. The data consists of the deaths counts and the initial exposure.

The datasets were extracted from the data summary tool provided publicly by the Canadian Institute of
Actuaries in 2014 The data reflected below is not equivalent to that used in the graduations of the tables
published in|CIA|(2014). In particular, the graduations published reflect numerous adjustments to the original
datasets. The data summary tool permits direct extraction of the unaltered dataset, with the exception of
the application of an adjustment for incurred-but-not-reported (IBNR) deaths described in|CIA (2014). For
producing the datasets below, that adjustment was backed out, by decreasing the death counts (both on lives
and amounts bases) in each individual year of experience by the appropriate factor. That process appears
to have been successful, as the death counts on a lives basis decrease slightly and become integers at each
age, as opposed to the fractional death counts provided in the direct extracts.

Some additional details and comments regarding the adjustments made to the datasets used in gradu-
ating the published CPM2014 tables are found in Appendix |G}

The authors of this paper had no part in the collection, validation, or tabulation of the CPM2014 datasets,
and therefore cannot speak to the completeness or appropriateness of the corresponding testing, adjust-
ments, exposure calculation, etc. The datasets are merely meant for purposes of illustration only, and as
such the information should not necessarily be relied upon for any specific purpose.

3 Available online athttp://www.cia-ica.ca/docs/default-source/2014/214013t5.zip.
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Appendix B Sample R Implementation

Much of the modelling and graphing in this paper was conducted with R code nearly identical to what is
provided below. The code is provided in the interest of reproducibility, and for interested parties to further
explore the concepts presented in this paper on their own.

What is provided below is simply a sample implementation of how one might approach various items.
While care was taken to ensure that the code works as would be expected over a wide variety of scenarios,
as it was meant to be a relatively basic implementation there are certain to be situations where the code fails
or the result returned not correct. Thus, it should not be relied upon without independent verification.

Where feasible, the results herein were checked against those generated by the group counts module in
Longevitas (Longevitas Development Team|(2017)) and the CMI graduation software released alongside

WP 077/(2015). Any errors remain the responsibility of the authors.

The implementation relies mainly on the standard R packages, with the exceptions of the numerical
derivatives package numbDeriv (Gilbert and Varadhan|(2016) and the package randtests (Caeiro and Mateus|
(2014) for direct access to a function providing the precise calculation of the p-value under the runs test.

THE CODE IS PROVIDED “AS 1S, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE
AND NON-INFRINGEMENT. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF
OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

HAHHHHHHRHHHHHHHHHHHHBRBHBH AR AR B R BB RSB A BB R HH R R R R R R R R R R R BB BB R B R BRI R R ARHRH

GRADUATE .POISSON

#

#

#

# Sample implementation of procedure to graduate mortality experience
# grouped by age using the Poisson model and certain mortality laws

#
#

HAHHHH R R AR AR R AR R RRHH R R R R R R R R R R BB B R B R BB B R B R BRI HHH

# REQUIRED PACKAGES

# numDeriv: grad, hessian
# randtests: runs.test
library (numDeriv)
library(randtests)

HAERHAHABHBRARBHRARBH AR A BB AR AR B RH B A B R AR AR BHARRBHAR AR BHB AR R BH SR AR R AR AR BHARABHARS
#

# CONSTANTS and CONTROL

#
HABHAHHBHARARBHBARBHARARBHBARRBHBRABHARABBABARBRAR AR BRBARRBHB AR BHBR AR BHARBBHERH

# If TRUE, model central mortality as m {appox =} mu @ x + 0.5
# If FALSE, model central mortality as integrated hazard
MODEL .M <- TRUE

# Initial parameters for fitting laws from Richards (2012)
INIT.ALPHA <- -10

INIT.BETA <- 0.1
INIT.EPSILON <- -10
INIT.RHO <- 0
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# Initial parameters for fitting Gompertz-Makeham - GM(r,s) - family
INIT.B1 <- -5
INIT.B2 <- 5
INIT.BX <- 0
INIT.AX <- 0

# For controlling optimization and fitting procedures.

# Setting the relative tolerance (REL.TOLERANCE) so low may be overkill,
# but it assisted in testing and comparing results to other implementations.
# Forcing the integrated hazard or central mortality (m) to MINIMUM.MU
# is meant to avoid errors being raised when a negative value would be

# attempted in the fitting process (which can happen when fitting to a
# GM(r,s) formula), but should not have impact on the parameters fitted.
OPTIM.METHOD <- "BFGS"

GRAD . METHOD <- "Richardson"

REL.TOLERANCE <- 1e-20

MAX.ITERATIONS <- 1000

MININIMUM.MU <- 1le-20

HAHBHAHARRH AR AR B R R R B R A SR A RA BB AR BH AR BH B R AR R AR AR BH AR B R AR AR BB A SRR AR R BB BR AR R HHS
#

# HELPER FUNCTIONS FOR GM(r,s) LAWS

#

HAHBHARARBH AR A BB AR AR BHASHBRAR R AR BH AR BH AR AR B AR R BHAR BB AR AR B HAR AR BH AR ARBBA AR RHS

HHHHHHHHHHAAHBH B R AR AR AR AR H BB R RHHH R R R R R R R R R B R B R B R AR B R BB R AR R R RS
# cheby (N, X) -> Return value of Chebyshev Polynomial of the first
# kind of order N evaluated at X
HHHHHHHHHHHA BB S S S S S S S S S S S S S S S S S S S S S S S S S SRR AR AR AR S
cheby <- function(N, X) {
if (N == 0) {
return (1)
}
else if (N == 1) {
return (X)
}
else {
return(2 * X * cheby(N - 1, X) - cheby(N - 2, X))
}
}

HARBEHBRHHBEHREERBERR B BERRBHHRERRBERRBHHBEHRBARBERRBRRRRAHBERRRR R RS HH
# boole(f) -> Numerically approximate integral using integrand f
# evaluated over O to 1 using Boole's rule
HAEHBHHHAEHHBEHBEE BB AR R BSH B AR R BEH B AR R BERRBS R B R R RS R B R BB AR B AR R B RR AR H RSB H
boole <- function(f)
{ (7*x£(0) + 32xf(0.25) + 12*x£(0.5) + 32%x£(0.75) + 7xf(1)) / 90 }

HAHBHARARBHARABBHRARBHAARARAB AR B BHARABH AR AR RARARBHAR A BB AR AR BHAA A BHBR AR BEA AR RHS
MORTALITY LAW FUNCTIONS

#
#
#
# Defined by functions for:

# - force of mortality (mu)

# - integrated hazard function (int)
#

#

HURHAHHRH B AR B AR AR RHF SR B R AR AR RBH SRR R AR R BB A SRR B R B A BB R AR AR A SRR R AR AR B RS R SRR HRH

HHHHHHHHHHHAH BB AR AR RS S S S S S S S S S SRR B S S S SRR RS SR B R R R RS
# Mortality laws from Richards (2012)

HHHHHHHHHHH A BB BB S H S S S S S S S S SRR B S S S S SRS S SR BB R BB R R R R AR RS S
gompertz.mu <- function(p, x) { exp(pl[1] + p[2] * x) }

gompertz.int <- function(p, x)

{ (Cexp(p[2]) - 1) / pl[2]) * exp(p[1]l + p[2] * x) %
gompertz <- list(mu = gompertz.mu, int = gompertz.int)
makeham.mu <- function(p, x) { exp(p[3]) + exp(p[1] + p[2] * x) }
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makeham.int <- function(p, x)
{ exp(p[3]) + ((exp(pl[2]) - 1) / pl2]) * exp(pl[1] + p[2] * x) }
makeham <- list(mu = makeham.mu, int = makeham.int)

perks.mu <- function(p, x)
{ exp(p[1]l + pl[2] * x) / (1 + exp(pl[1] + p[2] * x)) }
perks.int <- function(p, x)
{ (1/p[2]) * log((1 + exp(pl[1]l + pl[2] * (x + 1)))
/ (1 + exp( pl[1] + p[2] * x ))) }
perks <- list(mu = perks.mu, int = perks.int)

beard.mu <- function(p, x) { exp(p[1]l + pl[2] * x) /
(1 + exp(pl[1] + p[3] + p[2] * x)) }
beard.int <- function(p, x)
{ (exp(-p[3]1)/p[2]) * log((1l + exp(pl[1] + p[3] + p[2] * (x + 1)))
/ (1 + exp(pl1] + p[3] + pl[2] * x))) }
beard <- list(mu = beard.mu, int = beard.int)

makeham.perks.mu <- function(p, x) { (exp(p[3]) + exp(pl[1]l + p[2] * x)) /
(1 + exp(p[1] + pl[2] * x)) }
makeham.perks.int <- function(p, x)
{ exp(pl[3]) + ((1 - exp(p[31))/pl[2]) * log((1 + exp(p[1] + pl[2] * (x + 1)))
/ (1 + exp(p[1] + p[2] * x))) }
makeham.perks <- list(mu = makeham.perks.mu, int = makeham.perks.int)

makeham.beard.mu <- function(p, x) { (exp(p[3]) + exp(pl[1] + p[2] * x)) /
(1 + exp(pl1] + pl[4] + p[2] * x)) }
makeham.beard.int <- function(p, x)
{ exp(p[3]) + ((exp(-pl[4]) - exp(p[31))/pl[2]) =
log((1 + exp(p[1] + pl[4] + p[2]*(x+1))) /
(1 + exp(pl[1] + p[4] + pl2] * x))) }
makeham.beard <- list(mu = makeham.beard.mu, int = makeham.beard.int)

HAEHHHBHARHHHH AR R HHHH R BB BB R B BB R B R B R R BB R AR BB AR AR H RS H S S SRR R R SRS
# Generalized Gompertz-Makeham Family - GM(r,s)
# See Forfar et al. (1988)
B EEEEEEEEEEEEEESEE s d d kR R T E e
gnrs.mu <- function(p, r, s, x) {
TX <- (x - 70) / 50
suml <- 0
if (r !'= 0) {
for (i in 1:r) { suml <- suml + p[i] * cheby(i - 1, TX) }
}
sum2 <- 0
if (s '= 0) {
for (j in 1:s) { sum2 <- sum2 + p[j + r]l * cheby(j - 1, TX) }
}

return(suml + exp(sum2))

}

gnrs.int <- function(p, r, s, x) {
integrand <- function(tt) { gmrs.mu(p, r, s, x + tt) }
boole (integrand)

}

gmrs <- function(r, s) {
list (mu = function(p, x) { gmrs.mu (p, r, s, x) },
int function(p, x) { gmrs.int(p, r, s, x) } )

}

HURHAHAHHBR AR BHRARBH AR AR B AR AR BHA SRR RA R R AR BAR AR BH AR H B R AR AR BHA SR RHR AR BHHS
# law.set(p, law) -> Create force of mortality (mu) and integrated
# hazard (int) functions for law using parameters p
HAHHH BB B R HHHHH R B R B R AR B R B R B R B R BB BB B R B R AR BB R A AR AR SRS S S S SRR R R RS RS
law.set <- function(p, law) {

off <- if (!MODEL.M) O else -0.5

list(mu = function(x) { law$mu (p, x + off) 1},
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234

int = function(x) { law$int(p, x + off) })
}

HAHBHARARBHARABBARARBHAARABRBRABBHBRABHARABBRRARBHAR BB RBR AR BAB A BH AR AR BRA AR RS
#

# MAIN FITTING FUNCTIONS

#
HURHHHHBHARAHRARARBHAR AR BHRRRRBHBRABHBR AR BRRERBHAR AR BRRARRBHB AR BHBR AR BHBRRBHERH

HUHHHHHHH BB U BB R G R BB H S B BB RS HH BB SR SR BB S SHH BB SRR HF SR H BB HH S S S SHH RS SR HH S
# 11(p, £, d) -> Exact log-likelihood function under the Poisson model

# Poisson parameter determined by multiplying central exposure by
# function f evaluated using the parameters in p and using the data
# under d

HUEHHHBARBHH AR HH AR HHBAFH B A H B AR H B AR HHHAFH B RS H B AR H B R A H B R AR H B RS R B AR HBRAHHHEHS
11 <- function(p, £, d) {

mu <- pmax (MININIMUM.MU, f(p, d$x))

sum(ifelse(d$e == 0, 0, -d$e * mu + d$d * log(d$e*mu) - lfactorial(d$d)))
}

HHHHAHBRRAR AR AR AR BRRH R R AR AR BB R R AR BR B R AR BB RR BB R AR AR BB BB AR AR AR RSB
# fit(p.int, f, d) -> Fit model and return key results

# Model fitted using mortality law defined by f, data under d, with
# p.init the initial parameters for optimization
HHAHAHBRBARAHAHERBRRARAHARBRBH BB RBRBRBARA BB AR BB RRRRR BB B RARRR BB BR B
fit <- function(p.init, f, d) {

11.fit <- function(p) { 11(p, if (!MODEL.M) f$int else f$mu, d) }
grr <- function(p) { grad(ll.fit, p, method = GRAD.METHOD) }

model<-optim(par = p.init, gr = grr, fn = 11.fit, method=0PTIM.METHOD,
control = list(fnscale=-1,
reltol=REL.TOLERANCE,
maxit=MAX.ITERATIONS))

hess.calc <- hessian(ll.fit, model$par, method = GRAD.METHOD)

return(list(ll=model$value, pars = model$par, npars = length(model$par),
hessian = hess.calc, fun=law.set(model$par, f)))

}

HARBHARARBHARABBRRARBHAS A BHBRABBHARABHBR AR BRRARBRAR A BB RRARBBAB AR RHBR AR BRR AR RS
#

# LAW-SPECIFIC FITTING FUNCTIONS

#
HUABHHHHBHARAHBHRARBHAR AR BHBRRBRHBERBHBRARBHRBRBHARARBRBBRRBHB SR BH AR AR BHA AR BHERH

HEHBHHRHHHBERRREERBER RS R B R BERBERRBERRRS R B R RR R B R R RE R RS R B H R R RSB H
# For laws from Richards (2012)

# Order of fitting below chosen to provide optimal stability
HAHBEHBRHHBEHBRARBEHRBEHBRRHBHHREERBER BB HBEHHBHHBERRBRHRRAHBEH BB R RRS S

fit.gompertz <- function(d) { fit(c(INIT.ALPHA, INIT.BETA), gompertz, d) }

# For Makeham, fit Gompertz (ALPHA and BETA) first and then add Makeham
# (EPSILON) term
fit.makeham <- function(d) {
model.gompertz <- fit.gompertz(d)
fit(c(model.gompertz$pars, INIT.EPSILON), makeham, d)
}

fit.perks <- function(d) { fit(c(INIT.ALPHA, INIT.BETA), perks, d) }

# For Beard, fit Perks (ALPHA and BETA) first and then add Beard (RHO)
# parameter
fit.beard <- function(d) {

model.perks <- fit.perks(d)
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fit (c(model.perks$pars, INIT.RHO), beard, d)
}

# For Makeham-Perks, fit Perks first and then add Makeham (EPSILON) term
fit.makeham.perks <- function(d) {

model.perks <- fit.perks(d)
fit(c(model.perks$pars, INIT.EPSILON), makeham.perks, d)
}
# For Makeham-Beard, fit Makeham-Perks first and then add Beard (RHO) term

fit.makeham.beard <- function(d) {

model.makeham.perks <- fit.makeham.perks(d)
fit(c(model.makeham.perks$pars, INIT.RHO), makeham.beard, d)

}

HUSHHHHSHH ARG HH AR B AR B R B RS HH RS HH AR BB H B G BB A G HH RS H BB H B GH B SH B RS HHHEH

# For Generalized Gompertz-Makeham Family - GM(r,s)

# Fit Gompertz (s) terms first, and then add non-linear Makeham (r)

# terms one-by-one

HHHHHHHHHHARB BB R AR R AR AR AR HHRRHH R R R R B R B R B R B R BB B R AR AR BB RRRRRHHS
fit.gmrs <- function(d, r, s) {

p.init <- if (s == 0) NULL
else if (s == 1) INIT.B1
else c(INIT.B1, INIT.B2, rep(INIT.BX, s - 2))
gnrs.fit <- if (s != 0) fit(p.init, gmrs(0, s), d) else NULL
if (r == 0) {
return(gmrs.fit)
}
else {
for (i in 1:r) {
r.pars <- if (i == 1) INIT.AX else c(gmrs.fit$pars[1:(i-1)1],
INIT.AX)
s.pars <- if(s != 0) gmrs.fit$pars[i:(i+s-1)] else NULL
gnrs.fit <- fit(c(r.pars, s.pars), gmrs(i, s), d)
}
return(gmrs.fit)
}
}
fit.gm <- function(r, s) { function(d) { fit.gmrs(d, r, s) } }
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RUN GRADUATION and STATISTICAL TESTS

Fitting done by function f over data d, with the underlying model
assumed to be Poisson

#

#

#

#

#

#

#

#

# The fitting function f must return a list that includes the following:
# - 11: the log-likelihood under the Poisson model

# - pars: the fitted parameters

# - npars: the number of parameters

# - hessian: the Hessian matrix (used to estimate the standard errors)
# - fun: the functions defining the mortality law, as determined
# by the fitted parameters

#

#

#

#

#

#

#

#

The data to which the mortality law is fitted must include certain
columns or elements:

- x: the ages (x)

- d: the number of deaths at age (x)

- e: the central exposure at age (x)

HHBHHHHBAABBHARABHARABBRBARBHARABBARARBHARABRARARBBRA A BHBRABBARARBHAR AR RERAHRH

graduate.poisson <- function(f, d) {
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304
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306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
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329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370

# Set results
result <- f(d)

11 <- result$ll
pars <- result$pars
npars <- result$npars

hessian <- result$hessian

m <- if (!MODEL.M) function(x) { result$fun$int(x) }
else function(x) { result$fun$mu(x + 0.5) }

fun <- list(mu = result$fun$mu,
int = result$fun$int,
qx = function(x) { 1 - exp(-result$fun$int(x)) I},
m = m)

rates <- m(d$x)

# Calculate standard errors and p-values for parameter estimates
std.dev <- sqrt(diag(solve(-hessian)))

z.stat <- pars / std.dev

p.values <- 2*pnorm(abs(z.stat), 0, 1, lower.tail = FALSE)

# Calculate deviance and residuals

0 <- d$ad

E <- rates * d$e

dev <- sum(2 * (ifelse(0 == 0, 0, 0 * log(0/E)) - (0 - E)))

res <- sign(0 - E) * sqrt(2 * (ifelse(0 == 0, 0, 0O * log(0/E)) - (0 - E)))

# Determine dispersion coefficient
dis <- dev / (length(d$x) - npars)

# Chi-squared calculations
chi  <- sum(((0 - E)72) / ifelse(E == 0, 1, E))
chi.p <- pchisq(chi, df = length(d$x) - npars, lower.tail = FALSE)

# Information criteria
aic <- -2 *x 11 + 2 * npars

bic <- -2 % 11 + log(length(d$x)) * npars

# Signs test

signs.p <- sum(res > 0)

signs.n <- sum(res < 0)

signs.a <- if(signs.p <= signs.n) "less" else "greater"

signs.test <- binom.test(signs.p, signs.p + signs.n,
alternative = signs.a)$p.value

# Runs test
runs <- length(rle(sign(res))$lengths)
runs.p <- runs.test(res, "left.sided", 0, "exact", FALSE)$p.value

# Consolidate main results and statistics

details <- list(pars = pars, npar = npars, std.dev = std.dev,
z.stat = z.stat, p.values = p.values, 11 = 11, aic = aic,
bic = bic, dis = dis, chi = chi, chi.p = chi.p,
signs.p = signs.p, signs.n = signs.n,
signs.test = signs.test, runs = runs, runs.p = runs.p)

# Calculate 95% confidence intervals
lower = log(qpois(0.025, 0) / d$e)
upper = log(qpois(0.975, 0) / d$e)
par (mfrow=c(2, 1))

# Plot crude versus fitted central mortality rates
obs <- log(d$d / d$e)
mod <- log(rates)

if (length(mod) == 1) mod <- rep(mod, length(obs))
y.min <- min(obs[is.finite(obs)],
mod [is.finite(mod)],
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399
400
401
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403
404
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lower[is.finite(lower)])
y.max <- max(obs[is.finite(obs)],

mod[is.finite(mod)],

upper [is.finite(lower)])

plot (d$x, lower, pch = 150, cex=1.25, col = "blue",
xlab = "Age", ylab = "log (Central Mortality)",
ylim = c(y.min,y.max), axes = FALSE)
axis (1, at=c(seq(from=floor(min(d$x)/5)*5,to=ceiling(max(d$x)/5)*5,by=5)),

las = 1)
axis (2, las = 1)
box ()
points (d$x, upper, pch = 150, cex = 1.25, col = "green")
points(d$x, obs, col = "black", cex = 1.2)
lines(d$x, mod, col = "red", 1lwd = 2)
legend ("bottomright", lwd=c(NA, 2, NA, NA), lty=c(NA, 1, NA, NA),
pch=c(1, NA, 150, 150), col=c("black", "red", "green", "blue"),

legend=c("Crude","Graduated","97.5th Percentile",
"2.5th Percentile"),
bty="n", cex=0.7)

# Plot deviance residuals

plot(d$x, res, col = "blue",
xlab = "Age", ylab = "Deviance Residual", axes = FALSE)

axis (1, at=c(seq(from=floor (min(d$x)/5)*5,to=ceiling(max(d$x)/5)*5,by=5)),
las = 1)

axis (2, las = 1)

box ()

abline(h = 0, <col = "red")

abline(h = 1.96, 1ty = 3)

abline(h = -1.96, 1ty = 3)

return(list (fun = fun, details = details))

}

HABHAHABHARABBHRARBHRARABBHBARBRHBRABHARABBRAARBRAR AR BRBARRBHBAABHBR AR BHAAABHER S
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# Sample Data

# Deaths and central exposures over ages 50 to 100 for females in British

# Columbia in 2011 from the Canadian Human Mortality Database (CHMD)

dat.sam <-

list (x = seq(50,100),
d = c(74, 71, 95, 87, 93, 100, 117, 123, 127, 125, 114, 143, 131,
145, 164, 170, 167, 168, 182, 214, 220, 227, 216, 247, 251,
254, 295, 316, 331, 360, 372, 422, 444, 489, 508, 531, 593,
604, 671, 652, 647, 604, 467, 486, 383, 350, 331, 226, 222,
148, 101),

c(36480.48, 36200.11, 35699.54, 35172.46, 34484.91, 33914.96,
33190.50, 32112.22, 30779.34, 29843.52, 29366.44, 28930.82,
28453.91, 28413.12, 27003.91, 24287.67, 22254.62, 21462.25,
20502.33, 19431.93, 18418.72, 17283.89, 16324.33, 15669.11,
15088.03, 14434.73, 13689.43, 13146.68, 12723.69, 12384.01,
11983.83, 11432.55, 10718.27, 10083.34, 9463.17, 8855.87,
8259.08, 7513.45, 6756.52, 5910.47, 5116.49, 4104.05,
3119.46, 2537.77, 1984.37, 1569.65, 1254.94, 938.53, 634.19,
403.07, 258.23))

(0]
n

# Examples of Graduations using Sample Data

## graduate.poisson(fit.gompertz, dat.sam)
## graduate.poisson(fit.makeham.perks, dat.sam)
## graduate.poisson(fit.gm(2,4), dat.sam)

HARHAHHRHBRARBHBARBHAR AR BHBARBBHB A BHRRARBRAARBRAR AR BRB AR R BHBAHBHBR AR BHBRABHARS
HARHHHARHFRARBHH AR BH AR R R BB R AR R RH B AR H BB RBRF AR R AR AR BB RS R R R B H R R AR AR RRH SRR HRH
HABHAHHBHARARBHAARBRAR AR BHBARBBHBAABHBRARBRAARBRAR AR BRBARRBHBRABHBR AR BHRAABHERH
HARHAHARHBRARRBH AR BHA R AR B AR AR B RAR AR H AR AR BHAA AR R AR AR B BR AR AR AR R B R AR AR BHA SRR HERS
HUBHHHHBHARARBHRARBHRAR AR BHBARRBHBRBBHBR AR BRBRRBHAR AR BRBRRRBHB AR BHBR AR BHBRBRHERH
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Appendix C Identities Regarding the Force of Mortality

Base Identities

The force of mortality i, called the hazard rate by statisticians, is formally defined as:

1
t, = lim —Pr(death before age x + h | alive at age x)
h—0+ h

. q
— lim Rz
h—0+ h

The integrated hazard function is then defined as:

t
Hz(t) :/:U’m—&-s dS
0

The probability of survival from x to x + ¢ is exactly given by:

tp$ — e_Hm (t)

And thus there is a precise relationship between ¢, and p,.:

1
qm = 1 _pI = 1 —67H1<1) — 1 _eijg) :LLa:+tdt

Definitions, Identities, and Approximations for Grouped Data

* [, The number of lives alive at age (z)

* d,: The number of deaths for those aged between (z) and (z + 1)

51

The following provides various key definitions, identities, and relationships regarding the key mortality mea-
sures, as well as explaining the main motivations for modelling the force of mortality p,, or at least the
central death rate m,, over the probability of death ¢,,.

When dealing with mortality experience at the level of the individual, the above relationships are sufficient
for statistical modelling purposes. With grouped data, such as the usual case in the construction of standard
base tables where data is aggregated by age and other factors, we need to define some additional quantities:

e ES: The total time lived between ages (z) and (z + 1), which can be termed the central exposed-to-

risk/exposure

 E!: Theinitial exposure at age (). In the absence of entrants or withdrawals (for reasons other than

death), E. =1,

To tabulate the central exposure EY in practice, days can be counted between the earliest of (1) the ap-

propriate birthday, (2) observation start date, (3) entry date, etc. to the latest of (1) the following birthday,
(2) death date (or exit for reasons other than death), (3) observation end date, etc. The exact tabulation will
depend on the age definition employed, but an age last birthday (ALB) basis is generally the most straight-
forward and effective, and will result in the implied p,, and g,, applying at exact age ().

If the central exposure E¢ is not available, it can be roughly approximated through the following identity:

©2018 Society of Actuaries



ES ~ El — ?ﬁ” (C.4)
Now, we can define the central death rate m,,:
d, j(;llx+t/j’:n+t dt
Mo T B T [ dt

Under the assumption where [, does not change rapidly over the age:

dy
E

%/%Ma:mﬂ) (c5)
0

Alternatively, under the assumption where p,, is constant over the age, taken to be equal to i, 1 (i.e.,
2

1
fo H g At & #H%)i

dl’
m, = Fg
st (C.6)
Note that if we instead work with initial exposure:
dll
4y = F; (C.7)

Advantages of Using the Force of Mortality

From equation (C.3), ¢, can be directly returned from p,,, but not the other way around. Indeed, graduating
mortality directly according to p,, or to m,,, provides numerous advantages over dealing with ¢,:

e As noted above, p, directly defines ,p, and thus g,, but g, does not necessarily return the exact
... To see how this one-way relationship can impact estimates in practice, we use a similar example
as provided in [Richards| (2008) and consider an extreme scenario where there are 100 lives alive at
the beginning of the year and 50 die during the year. No matter when during the year those 50 lives
died, g, will equal f’—&) = 0.5. If on average the 50 lives die exactly halfway through the year, then

s = 501050 = 0.6667. However, if all 50 lives die at the end of the January, then m,, is estimated as
2
501050 = 0.9231. Thus, using u,, or m,, retains additional information compared to g,,.
12

* Since g, is the probability of those aged (x) dying within the next year, it must tend to 1 as the higher
ages are approached. There are no such restrictions on p,, or m,; they can theoretically go well
above 1 without limit. As such, more complex models are required to deal with g, than for u,, or m,,
for higher ages. For example, Figuremillustrates a situation where p,, is log-linear at all ages (i.e.,
Gompertz’ law), the resulting g,,, as per equation , will follow a logistic shape. Clearly, the shape
of the force of mortality is much simpler to capture.
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Figure C.1: Force of Mortality (x,,) and Mortality Rate (g, ) under Gompertz’ Law
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* Whenever ¢, is used, even at the individual level, the initial exposure E; must be invoked. Unlike with
the central exposure EY, it is not possible to deal with entrants during the year, as might be the case
with retirements, the commencement of a new annuity or insurance coverage, or the succession of a
spouse or other beneficiary to a pension or policy, in a completely satisfying manner. It is especially
problematic to capture cases where a life dies within the year of entry. For illustration, say a life en-
ters halfway through the year and dies before the end of the year. In such a situation, d,, is clearly
incremented by 1. If the life had survived the year, E; would presumably need to be increased by 0.5.
However, as the life died, if 0.5 is added then mortality would be overstated (the implied g,, could even
be brought above 1 in extreme cases); adding 1 to Efc instead is better and the common practice, but
clearly understates mortality (this approach follows from the Balducci hypothesis, which implies that
the force of mortality decreases over a year-of-age) . The use of initial exposure also leads to other
issues, including in situations where there are withdrawals for reasons over than death (such as lapse).
All those issues are avoided if u,, is used at the individual level, or if the central exposure E and m,,
is used for aggregated experience.
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Many of the points listed above relate to one of the most fundamental advantages of central over initial
exposure, which is the ability to properly reflect left-truncation and right-censorship. Experience data is gen-
erally left-truncated, as information on deaths falling before the observation start date is unavailable, as well
as right-censored, as not all lives will be deceased by the end of the study period. These considerations are
especially critical when analyzing mortality at the level of the individual.

As the mathematics are simpler and the limitations fewer, this paper focuses exclusively on working with
1, orm,,. Assuch, all references to exposure generally refer to central exposure E unless explicitly stated.
As described in detail in|Forfar et al.[(1988)), a similar statistical framework (though invoking a binomia@as
opposed to a Poisson assumption) can be applied to g,, instead if absolutely necessary. However, the simple
identities and approximations provided through equations (C.3), (C:4), (C.5), and should permit the use
of central exposure in most situations.

Implementation Notes

The approximation under equation should generally be considered slightly more statistically valid than
that under equation . As explicit, closed-form expressions for H ,(t) are available for many of the mor-
tality laws explored in this paper (for instance, see [Richards| (2012) for integrated hazard functions corre-
sponding to the laws presented therein), the former approximation does not necessarily pose any particular
complications.

Nevertheless, for simplicity and consistency, the results in this paper are calculated using the approxima-
tion under equation (C.6), though m,, is parameterized directly as opposed to p,,. The results and conclusions
would not have been materially different had the equation (C.5) been employed instead.

The sample R implementation in Appendix [B] allows for either approximation to be applied, with the
choice controlled through a single variable.

3Where the conditional likelihood function under the binomial assumption is L (8) o [] q,,(8)%= (1 — qI(G))E;_d‘T.
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Appendix D The Poisson Model and Overdispersion

Under the assumption that the count of deaths at age x follows a Poisson distribution as described under
equation , the mean and variance of the corresponding random variable D, are assumed to be equal:

E(D,)=Var(D,)=X= E_ m, (D.1)

This is a suitable assumption in many cases, but there are certain reasons why the Poisson model may
not perform well in practice. One of the most common such situations is where a large amount of duplicates
is present in the dataset. That is, where an individual has multiple policies, pensions, annuities, etc. and
each is treated separately as opposed to being combined. Ideally, all such duplicates would be identified and
the corresponding records merged. However, that may simply not be possible in some cases, such as when
dealing with grouped data.

Note that the use of amounts-weighted exposure and deaths also creates a form of duplication, as each
unit of exposure and/or death no longer will be independent.

In cases of duplication or other violations of the Poisson properties, the variance of D, is likely higher than
the mean, which is referred to as overdispersion. One way to quantify dispersion within the Poisson model
framework is by dividing the Poisson deviance (or, alternatively and nearly equivalently, the Pearson’s x?
statistic) by the degrees of freedom, i.e. the number of observations less the number of model parameters.
This ratio can be referred to as the “dispersion coefficient” DC'F:

Deviance = 22 [dm x log (ij) —(d, — fx)] (D.2)
Deviance

where N is the number of observations (ages) and K is the number of parameters.

If the dispersion coefficient is close to 1, then there is no real evidence of dispersion. A coefficient under
1 would imply underdispersion (which is relatively rare in practice), while one over 1 implies overdispersion.
If the amount of dispersion is deemed significant, then a different model may be warranted.

If the dispersion is significant but within reasonable bounds, then a quasi-Poisson model may make sense.
Under such a model, the parameter estimates are the same as under the basic Poisson model (i.e., the mean
is the same as under the Poisson), but the p-values and certain statistics are altered by adjusting the variance
by a dispersion factor v:

E(D,) = E,i,
Var(D,) = ¢E(D,) =  (E,n,) (0.4)

If the amount of dispersion is more significant, then it could make more sense to switch from the Pois-
son model to the more general negative binomial model, where the overdispersion will impact both the
parameter estimates and the variance. The negative binomial distribution is a generalization of the Poisson
distribution, which includes an additional parameter so that the variance can vary from the mean. Under a
negative binomial distribution with % the dispersion parameter, A (0) = E,m_(0), p,(0) = )\:‘@%, and

I' (-) the gamma function, the corresponding conditional likelihood function is:
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I'(d, +)
LT ()

Now, in the case that there is access to the underlying individual data and there is the ability to merge any
individual duplicate records, remaining overdispersion could be evidence that the assumption of a Poisson
distribution is problematic for other reasons. Working with mortality at the level of the individual eliminates
any necessity to make an assumption regarding the distribution of deaths at any particular age. Instead, we
can work with the conditional likelihood function defined for each individual ¢ who entered the observation
period at age x; and was observed for time ¢;, where d; is 1 if the individual died at age (z; +t;) and 0
otherwise:

L(0,9) p(6)%= (1 — p(6))* (D.5)

~ d;
L (0> (8 H tipxiua:i+ti ’ (D6)
%

As ,p,, is precisely determined by 11, through equation (C.2), the above likelihood function is dependent
solely on the function for the force of mortality p,, (itself being a function of parameters 6).

Refer to|Richards|(2008) and|Richards et al.|(2013) for case studies where survival models are applied to
the mortality experience at the level of the individual.
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Appendix E  Technical Notes on Implementing GM (r, s)

The GM (r, s) family described by equation (8) represents a general form that can capture a wide variety of
mortality patterns, and it has been widely used by the Continuous Mortality Investigation (CMI) in the United
Kingdom. There are a number of technical considerations that should be noted regarding how the GM (r, s)
curves are fitted in practice.

Most importantly, for fitting purposes and for better scaling and stability of the parameters, the GM (r, s)
structure relies on polynomials in age based on the transformation T'(z) = xggo and Chebyshev polynomials
of the first kind defined by C'(NN, X), where when r or s is equal to 0 the corresponding summation is

completely excluded:

r—1 s—1
po = GM(r,s) = a,C(i,T(x)) + exp {Z b;C(J, T(l’))} (E.1)
i=0 j=0
Where the Chebyshev polynomials C(V, X)) are defined recursively as:
1 N=0
C(N,X)=< X N=1

2X x C(N—1,X)—C(N—2,X) N>2

By employing the Chebyshev polynomial structure, it is easier to fit the parameters, the parameter val-
ues are more consistently scaled, and the values are more stable when additional parameters are added.
Other orthogonal polynomial bases, such as Legendre polynomials or the basis provided through the poly
function in|R Core Team|(2017), could be used instead to achieve the same benefits. In this paper, the Cheby-
shev polynomials are invoked primarily to maintain consistency with the CMlI’s established approach when
graduating mortality tables.

When the mortality probability rates g,, are required, it is most accurate to determine them through the
precise relationship with pu, provided through equation . Explicit formulae for the integrated hazard
function H,(t) could be determined for the GM (r, s) family where s < 2, though even then they could be
unwieldy, especially in the presence of the Chebyshev polynomials and the transformation of . Sufficiently
precise results can instead be obtained through a numerical integration approach, and the CMI has employed
Boole’s rule for that purpose in recent graduations:

1
H,(1) ~ o (7;% 321+ 1201 + 32,8 + mm) (E.2)

The sample R implementation included in Appendix[B|is consistent with the above, as is that described
in|CMI WP 077/(2015).
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Appendix F On Amounts-Weighted Mortality Experience

As discussed under Section[9} an approximation to the financial impact of amounts (of pension, policy face
value, other benefits, etc.) can be achieved by weighting the deaths and exposure by the pension, annuity,
or policy amount applicable to the underlying lives. So, the amounts-weighted central mortality rate mZ is
simply the ratio of the amounts-weighted deaths d2 to the amounts-weighted exposure E¢, that is:

oz
The amounts-weighting is mathematically (and conceptually) equivalent to multiplying the lives-based
m,, by a ratio of average pensions:

m (F.1)

Average Pension for Lives Dying at Age x
¢ —m, X - - (F.2)
r v Average Pension forall Lives at Age x

m

As the average pension for members dying is expected to be lower than the overall average, the ratio will
generally be < 1andsom2 < m,,.

We can choose to apply the same mathematical forms described in Section[5|with respect to lives-based
mortality to that under amounts-based weightings. However, in order to produce more meaningfully scaled
values for the residuals and other statistical tests, we need to scale the exposures and/or deaths in a manner
that preserves the crude amounts-weighted mortality but that removes the level of the absolute amounts.
One optionis to scale at each individual age, multiplying both the amounts-weighted deaths and exposure by
the ratio of the unweighted to amounts-weighted deaths count. Effectively, the deaths figure simply becomes
the unweighted count (d,,) and the exposure is adjusted accordingly to retain the proper amounts-weighted
crude rates. That s the approach that will be taken in what follows, and is also what was invoked in Section[9]

Following the same approach as under Section |5, we can try each model form in turn and determine
which returns the optimal values of the AIC and BIC. As was the case for the lives analysis, the best-fitting
model is found to be a GM (1, 3). Details on the corresponding parameter estimates are found in Table

Table F.1: Parameters under GM (1, 3) Model for CPM2014 Males on Amounts Basis

Parameter Estimate  Standard Error Z p-value Significance
ag 0.001130 0.000331 3.4144  6.3918e — 04 * % %
by —4.541924 0.169649 —26.7725 0 * % %
by 6.329917 0.170193 37.1926 0 R
by —0.379542 0.145501 —2.6085 9.0934e — 03 *ok

It is an almost necessary feature of amounts analysis that the experience be more dispersed (see Ap-
pendix@ than it is on a lives basis. That is borne out in the x? p-value, which under the amounts-weighted
GM (1,3) is a highly-significant 0.000207, compared to the very insignificant 0.5579 it was with the lives
GM (1,3). The deviance residuals provided in Figureare also more dispersed than they were on the lives
basis.
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Deviance Residual

Figure F.1: Deviance Residuals — Amounts-Weighted Graduation
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The approach explored under Section [9]allows for the most flexible model, though employing amounts-
weighted mortality can be a useful tool. However, analysis should still first be performed on a lives basis, as
doing so helps to gain better understanding of the experience.
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Appendix G Notes on the Datasets Used as Main Case Study

As mentioned in Appendix [A} the data used as a case study throughout the majority of this paper repre-
sents the original, unaltered data underlying the CPM2014 set of Canadian pensioner tables published in
CIA| (2014), but differs significantly from what was actually used to graduate the published tables. That is
a consequence of numerous adjustments made to the crude data prior to graduation. Few, if any, of these
or comparable adjustments are found in the construction of standard tables produced by the Continuous
Mortality Investigation in the United Kingdom, the Society of Actuaries in the United States, or the Canadian
Institute of Actuaries in Canada for tables released prior to|CIA|(2014).

There were four main adjustments applied to the data before graduating the CPM2014 tables:

1. Adjustment to deaths for incurred-but-not-reported (IBNR) deaths
2. Adjustment to deaths for assumed mortality improvement
3. Adjustment to exposure and deaths to modify weightings by “industry”

4. Adjustment to deaths and lives-based exposure to “standardize” amounts distribution by age

We will reconcile the most significant of the above adjustments, that being the “standardization” of the
amounts distribution by age. That modification appears to have had the greatest impact on the shape and
the level of the resulting table. Exploring some of the observations that appear to have led to its introduction
are quite instructive.

Before describing the adjustment itself, it is necessary to make some observations regarding the evolution
of pension amount by age for the total CPM2014 dataset. The average pension by age is shown in Figure|G.1
for males.

From the mid-50s, the average pension-in-pay decreases markedly. Some of the apparent reasons for
that pattern include the following items:

(i) Bridging Pensions: The decrease in pensions between 63 and 65 is largely attributable to the cessation
of bridging pensions. At lower ages in this dataset, much of the exposure is weighted towards “pub-
lic sector” plans, where additional, automatic pensions are provided up to age 65 when government
benefits such as those provided under the Canada Pension Plan or Québec Pension Plan typically com-
mence. Only few “private sector” plans provide such additional pensions automatically, though “level
income” options are relatively common, where the pension payable before age 65 is increased and
that payable after age 65 reduced accordingly on a present value basis. A portion of the decrease may
also be attributable to the commencement of deferred pensions, especially within the private sector.

(i) Wage Inflation: A significant portion of the decrease past age 65 would be attributable to wages
outpacing increases to the pensions (if any). Even in the case of plans fully indexed to increases in
the Consumer Price Index (CPI), the indexation adjustments would still be expected to be less than the
increase in wages that determine the pension amounts at retirement. Complicating matters further,
not all pension plans included in the CPM2014 dataset are fully indexed; some would be partially
indexed, and some not indexed at all. Pensions in the public sector are much more likely to be indexed
than those in the private sector.

(iii) Socio-Economic Shifts: Even after accounting for the cessation of bridging pensions and the effects
of wage inflation, part of the decrease may be attributable to socio-economic shifts, both within and
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Figure G.1: Average Pensions for Males by Age in Total CPM2014 Dataset
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between plans. For example, part of the reason for the strength of the decrease in the average pension
in the total dataset is a shift towards the private sector at the higher ages.

In terms of the graduation of the crude mortality experience:

¢ The effect of the bridging pensions under (i) will have absolutely no impact on a lives basis and very
little on an amounts basis. The only impact on an amounts basis is that more weighting than warranted
may be applied to ages or plans where bridge pensions are more common. The amounts effect across
ages can be mitigated by adjusting the deaths and/or exposure within each individual age to account
for the average pension at that particular age, as described in Appendix[F} However, the inclusion of
bridging pensions may well have implications for the weighting between plans that provide and do not
provide such benefits before age 65. As such, automatic bridging pensions (such as those provided
under “public sector” plans) should almost certainly be excluded for any analysis if possible, though
those created under level-income options are trickier.

¢ The wage inflation considerations under (ii) also have little effect on the main graduations, especially
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with the mitigation of the impact that can be provided by adjusting for the average pension in the
weightings by age, again as described in Appendix[F} However, once again the impact of wage inflation
can also be expected to have the potentially undesired effect of shifting the weightings by amounts
from less generous plans with lesser indexation adjustments to those with automatic adjustments.

The effects of socio-economic shifts are more subtle (especially across a pooled dataset) and much more
difficult to attribute between differences in benefit formula, indexation provisions, service periods, and salary
levels, as each has very different implications depending on the particular circumstance of the plan in ques-
tion. However, in general, none of the specific concerns described above should have any bearing on the
resulting best-estimate mortality rates.

However, in|CIA!(2014) the deaths and exposure were adjusted prior to graduation in such a manner that
the exposure across the thirteen size amount bands at each individual age was adjusted (“standardized”)
to match the distribution across the entire age range. The dataset produced by the adjustment was not
published, but it can be reconstructed by the data tool made available by the Canadian Institute of Actuaries.

The data for the total male dataset before the “standardization” adjustment (but with the adjustment
for IBNR deaths) and with the adjustment incorporated is provided as Table[G.1]at the end of the appendix.
The chart provided as Figure shows the curves fitted with Makeham-Perks over ages 55 to 95 on an
amounts-weighted basis with and without the adjustment.

As would be expected, the adjustment increases mortality before age 65 (i.e., while the bridging pensions
are still in pay) and correspondingly decreases it after age 65. The distortion to the shape of the graduations
is quite substantial.

While the presence of the bridging pension and wage inflation effects are not particularly problematic for
the graduation, those considerations certainly have implications when attempting to analyze the experience
by pension amount. Those implications are amplified by pension amounts not being revalued to take into
account indexation adjustments (where applicable) to ensure that observed experience is consistent across
all years. By way of example, Figure[G.3|provides the crude and graduated rates for males in the second of
thirteen CPM2014’s size amount bands. The group captured before and after the cessation of the bridging
pensions appears to be completely different. This observation was our main motivation to restrict the analysis
in Section[9]to ages 65 and above.
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Figure G.2: Graduations for Total Male Dataset with and without “Standardization”
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Figure G.3: Crude and Graduated Rates for CPM2014’s Size Band Il for Males
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Table G.1: Male Dataset with and without “Standardization” Adjustment

2 65

Before Adjustment

After Adjustment

Age Lives Amounts Lives Amounts

Deaths Initial Exp. Deaths Initial Exp. Deaths Initial Exp. Deaths Initial Exp.
50 8.05 1,523.64 164.21 40,296.73 9.60 1,834.18 169.48 40,296.73
51 34.19 2,573.63 780.35 76,295.63 47.87 3,469.61 791.87 76,295.63
52 27.16 4,357.73 486.67 140,919.95 66.76 6,380.04 780.33 140,919.95
53 32.18 7,737.12 723.01 271,290.94 91.41 12,191.23 1,117.31 271,290.94
54 68.38 13,804.35 1,688.00 508,299.94 222.53 22,885.70 3,218.03 508,299.94
55 117.40 27,218.52 3,063.13 970,104.05 334.65 43,711.34 4,760.29 970,104.05
56 180.98 37,712.77 4,971.59 1,337,728.67 474.28 60,263.56 6,823.71 1,337,728.67
57 217.38 45,254.96 6,791.85 1,608,443.22 432.88 72,593.76 7,749.55 1,608,443.22
58 262.31 51,240.61 7,905.39 1,827,856.72 540.14 82,181.80 9,520.21 1,827,856.72
59 329.14 55,714.27 9,258.99 1,979,945.01 786.23 88,979.72 12,088.87 1,979,945.01
60 395.20 61,379.12 11,298.30 2,126,245.80 802.44 95,240.29 13,626.92 2,126,245.80
61 473.97 63,872.04 12,804.34 2,158,791.59 939.94 96,987.93 15,479.09 2,158,791.59
62 525.77 63,261.81 14,424.38 2,084,253.12 954.10 93,805.89 16,161.43 2,084,253.12
63 573.09 63,586.11 14,851.92 2,039,342.38 1,002.59 92,019.21 16,969.00 2,039,342.38
64 647.74 64,562.76 16,992.26 1,869,058.53 886.05 84,283.58 17,681.37 1,869,058.53
65 768.38 71,295.59 15,797.94 1,700,679.15 857.60 77,338.67 16,022.11 1,700,679.15
66 872.67 72,265.38 16,966.70 1,639,990.27 908.51 74,644 .97 16,935.33 1,639,990.27
67 1,003.11 70,896.20 18,437.15 1,548,993.29 997.42 70,607.06 18,117.21 1,548,993.29
68 1,175.44 69,866.44 20,254.92 1,464,072.63 1,111.16 67,006.80 19,741.50 1,464,072.63
69 1,172.25 68,890.27 19,666.98 1,382,862.30 1,054.25 63,430.44 18,933.47 1,382,862.30
70 1,366.47 68,275.90 22,231.00 1,315,781.26 1,167.47 60,483.31 21,175.99 1,315,781.26
71 1,441.13 67,592.34 22,235.91 1,248,435.55 1,177.12 57,525.83 20,855.06 1,248,435.55
72 1,592.55 67,496.84 24,177.79 1,197,450.35 1,251.52 55,337.51 22,758.64 1,197,450.35
73 1,877.74 66,870.80 27,079.88 1,140,117.58 1,397.16 52,788.08 24,787.56 1,140,117.58
74 2,047.70 66,019.25 29,580.15 1,089,174.58 1,477.74 50,512.55 26,947.77 1,089,174.58
75 2,237.78 64,607.63 30,742.82 1,029,504.36 1,5652.78 47,688.42 28,091.67 1,029,504.36
76 2,371.26 62,543.03 32,171.96 968,669.22 1,612.06 44,861.19 29,912.73 968,669.22
7 2,631.37 60,154.44 37,240.51 901,547.30 1,768.20 41,801.56 35,422.29 901,547.30
78 2,720.53 57,094.10 34,597.24 826,518.43 1,724.66 38,415.11 32,273.10 826,518.43
79 2,885.16 54,062.55 35,738.30 755,843.96 1,761.29 35,137.08 32,700.42 755,843.96
80 2,977.46 50,172.25 36,237.69 683,782.54 1,739.33 31,747.41 31,811.79 683,782.54
81 2,974.13 46,118.03 35,434.89 613,895.41 1,705.99 28,428.00 31,989.71 613,895.41
82 3,044.66 41,665.32 36,714.27 541,750.66 1,724.68 25,062.15 33,548.98 541,750.66
83 3,007.15 37,001.14 34,935.30 466,897 .45 1,666.24 21,567.47 32,609.94 466,897 .45
84 3,122.01 32,599.46 34,410.40 399,075.35 1,639.30 18,436.92 31,646.49 399,075.35
85 2,860.99 28,016.42 32,853.48 334,400.41 1,518.83 15,470.60 30,933.15 334,400.41
86 2,636.80 23,861.40 28,729.49 277,838.17 1,351.39 12,864.43 27,308.62 277,838.17
87 2,469.07 19,838.07 26,283.22 224,381.67 1,217.32 10,402.34 24,486.15 224,381.67
88 2,264.96 16,233.58 22,994.51 178,291.41 1,081.82 8,295.90 21,608.97 178,291.41
89 1,985.18 12,866.61 20,453.81 139,197.86 964.10 6,491.04 19,572.10 139,197.86
90 1,736.13 10,293.08 17,469.17 109,662.55 827.92 5,112.45 16,765.38 109,662.55
91 1,529.05 7,936.15 15,344.67 83,764.44 707.29 3,909.41 14,323.16 83,764.44
92 1,204.14 5,889.68 12,501.48 61,069.45 576.03 2,841.23 12,412.89 61,069.45
93 949.84 4,277.85 8,582.01 43,422.99 405.77 2,014.39 8,125.15 43,422.99
94 737.23 3,002.27 7,701.07 30,498.48 364.31 1,416.85 7,915.47 30,498.48
95 536.83 2,050.67 5,647.15 20,262.22 263.76 945.48 6,219.31 20,262.22
96 408.68 1,394.67 3,890.83 13,189.58 190.10 615.78 4,204.75 13,189.58
97 258.78 908.26 1,778.71 8,117.89 92.90 382.51 1,516.13 8,117.89
98 187.21 594.67 1,605.01 5,662.13 80.24 265.75 1,680.72 5,662.13
99 129.88 366.00 1,426.78 3,664.57 69.40 177.62 1,503.87 3,664.57
100 65.41 217.00 476.90 1,980.66 29.78 95.05 524.15 1,980.66

©2018 Society of Actuaries



66

About The Society of Actuaries

The Society of Actuaries (SOA), formed in 1949, is one of the largest actuarial professional organizations
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for its members, industry, policymakers and the public. This distinct perspective comes from the SOA as
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other topics. The SOA’s research is intended to aid the work of policymakers and regulators and follow
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Relevance: The SOA provides timely research on public policy issues. Our research advances actuarial
knowledge while providing critical insights on key policy issues, and thereby provides value to
stakeholders and decision makers.

Quantification: The SOA leverages the diverse skill sets of actuaries to provide research and findings that
are driven by the best available data and methods. Actuaries use detailed modeling to analyze financial
risk and provide distinct insight and quantification. Further, actuarial standards require transparency and
the disclosure of the assumptions and analytic approach underlying the work.
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