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Examining the Oldest-Old Mortality in the U.S.: 
A Forecast Reconciliation Approach 
 

Han Li 
 

ABSTRACT 
Understanding the heterogeneity in regional-level mortality experience is of fundamental importance. This paper 
analyzes the state-level mortality rates for 50 U.S. states as well as the District of Columbia at age 80 and above via a 
novel forecast reconciliation approach. Based on mortality data from 1990–2017, we project the 10-year-ahead 
mortality rates at national and state levels up to 2027. We find that the geographical heterogeneity in the old-age 
mortality experience is likely to continue and the mortality improvement rates will to slow in the next decade. 

1 BACKGROUND 
With rapid economic growth and medical advancement, life expectancy in the U.S. has continuously improved in 
recent decades. The increasing trend in life expectancy has led to a considerable amount of longevity risk faced by 
insurance companies, pension providers, government agencies and individuals. Numerous studies have been 
conducted to understand and analyze the U.S. national-level mortality trends from a demographic, actuarial or 
epidemiology point of view (see, e.g., Rice and Feldman 1983; Lee and Carter 1992; Preston and Wang 2006). 
However, relatively little is known about the disparities in mortality experience among individual U.S. states, and 
more importantly, whether these state-level mortality trends will converge or diverge in the future. Recent research 
has found large geographical inequalities in mortality experience within the U.S. (see, e.g., Wang et al. 2013; Dwyer-
Lindgren et al. 2016). These findings have urged the need to model and forecast mortality on not only the national 
level, but also the state level, in an integrated manner. 

In this paper, we propose a novel forecast reconciliation approach to jointly projecting national-level and state-level 
age-gender-specific mortality rates. We focus on the mortality experience of the so-called “oldest old” (age 80 and 
over) across 51 U.S. states.1 We have chosen to investigate this age range since its mortality experience plays an 
important role in overall longevity improvement, especially in an era of population aging. In Section 2, we compare 
the state-level oldest-old mortality rates between 1990 and 2017. To better visualize the geographical 
heterogeneity in mortality, we plot estimates of both mortality rate and percentage change in mortality rate on 
maps. In Section 3, we introduce the cutting-edge trace minimization forecast reconciliation approach 
(Wickramasuriya, Athanasopoulos and Hyndman 2019) in the context of mortality forecasting. The approach is then 
applied in Section 4, to forecast the 10-year-ahead U.S. mortality rates up to 2027. Based on our results, we find 
that the heterogeneity in mortality experience across U.S. states is likely to persist in the future. Moreover, even 
though almost all states are still expecting a decrease in mortality rates of the oldest old, the overall improvement 
rate seems to slow down in the next decade. 

                                                                 

 

1 For ease of exposition, in this paper we will refer to the District of Columbia as a “state.” 
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2 STATE-LEVEL OLDEST-OLD MORTALITY RATES 
To compute mortality rates for age groups 80 to 100+, we collect U.S. state-level death and population data from 
1990–2017 from two main sources: 

• National Center for Health Statistics (NCHS). The NCHS records information of all individual deaths in the 
U.S. since 1959, including gender, date of birth, month of death and geographical identifier. We collect 
state-level death data from NCHS for the period 1990–98. 

• Centers for Disease Control and Prevention (CDC) Wide-ranging Online Data for Epidemiologic Research 
(WONDER) database. The CDC WONDER database provides a rich query system for the analysis of public 
health data. We collect state-level death data for the period 1999–2017 via “Underlying Cause of Death, 
1999–2017 Request,” and collect state-level mid-year population data for the period 1990–2017 via 
“Bridged-Race Population Estimates, 1990–2017 Request.”2 

 
The crude mortality rate m is calculated by: 

 𝑚𝑚 =
𝐷𝐷
𝐸𝐸

 , (1) 

 
where D represents the number of deaths and E represents the corresponding population exposure. We use the 
mid-year population estimates obtained from the CDC WONDER database to approximate the population exposure. 

Based on the collected data, we calculate the crude mortality rates of age group 80 to 100+ for 51 U.S. states from 
1990–2017, as well as the corresponding percentage change in mortality rates between 1990 and 2017. Table 1 
shows mortality experience in 2017 for the “top” five and “bottom” five states in terms of crude rate and 
percentage change, with top ranked states having the lowest crude rate or the smallest value of percentage change 
(largest mortality improvement). We can see that overall, the District of Columbia ranked highest, with a crude rate 
of 7.99% and percentage change of –24.19%. Hawaii, Florida, Arizona and Alaska also stood out as states with low 
mortality rates for ages 80 and above. On the other hand, high rates of oldest-old mortality were found in the 
Southeast and Midwest regions in the United States including West Virginia, Tennessee, Kentucky and Indiana. In 
terms of mortality improvement, besides highly urbanized states such as the District of Columbia and New York, and 
Alaska, Wyoming and California also experienced a substantial decrease in the oldest-old mortality rates. 
Nevertheless, the worst morality improvement rates were found in several sparsely populated states including 
Maine, Utah, Rhode Island, South Dakota and Idaho. As an exception, Idaho was the only state that experienced 
worsened mortality rates from 1990 to 2017. 

  

                                                                 

 

2 Note that the state-level population data is only available for ages 80 to 85+. However, as we would need to aggregate both death data and exposure 
data for ages 80 to 100+ to obtain mortality forecasts for the oldest old, this does not affect our final estimates. 
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Table 1 
MORTALITY EXPERIENCE FOR SELECTED U.S. STATES IN 2017 

Rank State Crude Rate Rank State Percentage Change 
1 District of Columbia 7.99% 1 District of Columbia −24.19% 
2 Hawaii 8.03% 2 New York −18.69% 
3 Florida 8.47% 3 Alaska −17.58% 
4 Arizona 8.68% 4 Wyoming −17.13% 
5 Alaska 8.76% 5 California −16.03% 
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

47 West Virginia 10.91% 47 Maine −1.23% 
48 Maine 10.91% 48 Utah −1.02% 
49 Tennessee 10.92% 49 Rhode Island −0.39% 
50 Kentucky 10.95% 50 South Dakota −0.38% 
51 Indiana 10.98% 51 Idaho  4.91% 

Sources: National Center for Health Statistics (NCHS) and Centers for Disease Control and Prevention (CDC). Wide-ranging Online Data 
for Epidemiologic Research (WONDER). Accessed March 8, 2019.  

Figures 1 and 2 illustrate the geographical variations in the mortality rates and the percentage changes, respectively. 
We can observe a very clear geographic pattern in these figures: Southern states have considerable survival 
disadvantages for their oldest-old age groups. Overall, there is a tendency for better mortality experience in urban 
states and states with favorable weather or a large population of elderly. On the other hand, the worst old-age 
mortality experience is mostly in rural states, states with lower socio-economic profiles and states with extremely 
cold winters. Our findings are consistent with those by Dwyer-Lindgren et al. (2016), Holman (2017) and Andreev, 
Gu and Dupre (2017). 

Figure 1 
U.S. STATE-LEVEL OLDEST-OLD MORTALITY RATES IN 2017 

 

Source: Centers for Disease Control and Prevention (CDC). Wide-ranging Online Data for Epidemiologic Research (WONDER). Accessed 
March 8, 2019.  
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Figure 2 
U.S. STATE-LEVEL PERCENTAGE CHANGE IN OLDEST-OLD MORTALITY RATES, 1990–2017 

Sources: National Center for Health Statistics (NCHS) and Centers for Disease Control and Prevention (CDC). Wide-ranging Online Data 
for Epidemiologic Research (WONDER). Accessed March 8, 2019.  

3 A HIERARCHICAL RECONCILIATION APPROACH 
Forecast reconciliation refers to the process of adjusting hierarchical time series forecasts such that the underlying 
aggregation constraints are met. Literature has been fast growing on forecast reconciliation, in particular during the 
last few decades (see, e.g., Dangerfield and Morris 1992; Kahn 1998; Zellner and Tobias 2000; Athanasopoulos, 
Ahmed and Hyndman 2009; Hyndman et al. 2011; Wickramasuriya, Athanasopoulos and Hyndman 2019).3 The 
advantages of forecast reconciliation are twofold. First, the reconciliation process ensures forecast coherency that 
helps people to make aligned decisions. In reality, it is almost impossible for independently projected forecasts at 
different levels to add up in a manner consistent with the underlying hierarchical structure. Therefore, reconciliation 
becomes a useful tool to reduce the discrepancy resulting from conflicting forecasts. Second, by incorporating 
information at all levels into the forecasting process, reconciliation improves the overall forecast accuracy in the 
hierarchy (see, e.g., Athanasopoulos, Ahmed and Hyndman 2009; Capistran, Constandse and Ramos-Francia 2010; 
Borges, Penya and Fernandez 2013; Syntetos et al. 2016). It is worth noting that the application of a forecast 
reconciliation approach in mortality modeling is not a new phenomenon; several earlier attempts have been made 
in reconciling cause-of-death mortality rates and regional infant mortality rates (see, e.g., Shang and Haberman 
2017; Li et al. 2019). 

In this paper, we adopt the trace minimization (MinT) method proposed by Wickramasuriya, Athanasopoulos and 
Hyndman (2019) to reconcile both death counts and population exposure in a hierarchical setting. Our approach is 
different from the approach used in Shang and Haberman (2017), which reconciled the ratio of death counts to total 

                                                                 

 

3 For an overview of major forecast reconciliation methods, see Hyndman and Athanasopoulos (2014). 
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exposure but ignored the hierarchical structure inherent in the population exposure. We decide to first reconcile 
death and population forecasts separately, and then produce mortality forecasts based on these coherent forecasts. 
In doing so, information on number of deaths and population exposure at all levels are taken into account in the 
forecasting process. 

We illustrate the reconciliation process for death data as follows.4 As can be seen in Figure 3, death data naturally 
forms a three-level hierarchical structure. At the top level (which we refer to as level 0), we have the national total 
number of deaths DT. This number can be divided into total number of male deaths DM and female deaths DF at 
level 1. At level 2, we further categorize gender-specific deaths by state, where 𝐷𝐷𝑖𝑖𝑀𝑀 denotes the number of male 
deaths in state i. Finally, we have gender-state-age-specific death counts at the bottom level (level 3), where 𝐷𝐷𝑖𝑖 ,𝑥𝑥𝑀𝑀  
denotes the number of male deaths in state i at age x. Therefore, we have 21 × 51 × 2 = 2142 time series at level 3, 
51 × 2 = 102 time series at level 2, two time series at level 1 and one time series at level 0. These sum up to 2247 
series in total. 

Figure 3 
THREE-LEVEL HIERARCHICAL TREE FOR NUMBER OF DEATHS 

  

 

 
For the hierarchical structure in the death counts, we have the following aggregation constraints at all times: 

 ∑ 𝐷𝐷𝑖𝑖,𝑥𝑥
𝑗𝑗100+

𝑥𝑥=85 =  𝐷𝐷𝑖𝑖
𝑗𝑗 ,∀𝑖𝑖 ∈ [1,51], 𝑗𝑗 = 𝑀𝑀,𝐹𝐹,  (2) 

 ∑ 𝐷𝐷𝑖𝑖
𝑗𝑗51

𝑖𝑖=1 =  𝐷𝐷𝑗𝑗 , 𝑗𝑗 = 𝑀𝑀,𝐹𝐹,  (3) 

 𝐷𝐷𝑀𝑀 + 𝐷𝐷𝐹𝐹  =  𝐷𝐷𝑇𝑇 .  (4) 

 

                                                                 

 

4 Note that the same approach described in this section can also be applied to population exposure. 
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To introduce the MinT reconciliation method, we first express the aforementioned aggregation constraints in a 
matrix form and formally define the following notation: 

 

• Define 

 

𝑦𝑦 = (𝐷𝐷𝑇𝑇 ,  𝐷𝐷𝑀𝑀 ,  𝐷𝐷𝐹𝐹 ,𝐷𝐷1𝑀𝑀 , … ,  𝐷𝐷51𝑀𝑀 ,  𝐷𝐷1𝐹𝐹 , … ,  𝐷𝐷51𝐹𝐹 ,𝐷𝐷1,80
𝑀𝑀 , … ,  𝐷𝐷1,100+

𝑀𝑀 , … ,  𝐷𝐷51,80
𝑀𝑀 , 

 … ,𝐷𝐷51,100+
𝑀𝑀 ,  𝐷𝐷1,80

𝐹𝐹 , … ,  𝐷𝐷1,100+
𝐹𝐹 , … ,𝐷𝐷51,80

𝐹𝐹 , … ,  𝐷𝐷51,100+
𝐹𝐹 )′  

as a vector that contains observations at all levels in the hierarchy, namely level 0, level 1, 
level 2 and level 3; 

• Define 

 

𝑏𝑏 = (𝐷𝐷1,80
𝑀𝑀 , … ,  𝐷𝐷1,100+

𝑀𝑀 , … ,  𝐷𝐷51,80
𝑀𝑀 , … ,  𝐷𝐷51,100+

𝑀𝑀 ,  𝐷𝐷1,80
𝐹𝐹 , … ,𝐷𝐷1,100+

𝐹𝐹 , … ,𝐷𝐷51,80
𝐹𝐹 , … ,

 
𝐷𝐷51,100+
𝐹𝐹  )′  

as a vector that contains observations at the bottom level (level 3) only. 

 

The two vectors can then be linked by the equation 

 𝑦𝑦𝑡𝑡 = 𝑆𝑆𝑏𝑏𝑡𝑡 , (5) 

 

where yt and bt represent the value of y and b at time t, respectively. S is a “summing matrix” of dimension 2247 × 
2142, which aggregates gender-state-age-specific death counts at the bottom level to obtain death counts at higher 
levels. It is given by 

S = 

 

 

 
where I2142 denotes an identity matrix of dimension 2142 × 2142. Therefore, the aggregation constraints in 
equations (2)–(4) are reflected in the structure of matrix S. 

Although Equation (5) holds for all observed values, it is unlikely to hold for independently obtained forecasts in the 
hierarchy. Let 𝑦𝑦�𝑇𝑇+ℎ denote the unreconciled h-step-ahead forecasts at all levels, and let 𝑦𝑦�𝑇𝑇+ℎ denote the 
correspondingly reconciled h-step-ahead forecasts, which satisfy all aggregation constraints. Any linear 
reconciliation method, according to Wickramasuriya, Athanasopoulos and Hyndman (2019), can be expressed as 

 𝑦𝑦�𝑇𝑇+ℎ = 𝑆𝑆𝑆𝑆𝑦𝑦�𝑇𝑇+ℎ, (6) 

 
where in our example P is a 2142 × 2247 matrix. The selection of P is not unique and is a key step in forecast 
reconciliation. 

Hyndman et al. (2011) provided an optimal combination method to estimate P such that the reconciled forecasts 
are unbiased given that the unreconciled forecasts are also unbiased. Wickramasuriya, Athanasopoulos and 
Hyndman (2019) extended the work by Hyndman et al. (2011) and further improved the method by proposing an 
alternative estimator of P. Wickramasuriya, Athanasopoulos and Hyndman (2019) selected P to be the matrix that 
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minimizes the trace of the covariance matrix of the in-sample reconciled forecast errors, which is 
𝑉𝑉𝑉𝑉𝑉𝑉[𝑦𝑦𝑡𝑡+ℎ −  𝑦𝑦�𝑡𝑡+ℎ|𝑦𝑦1,𝑦𝑦2, … , 𝑦𝑦𝑡𝑡]. Therefore, the method is referred to as the trace minimization method.5 

Based on the MinT approach, the reconciliation matrix P is given by  

 𝑃𝑃 = (𝑆𝑆′𝑊𝑊ℎ
−1𝑆𝑆)−1𝑆𝑆′𝑊𝑊ℎ

−1, (7) 

 

where Wh represents the covariance matrix of the h-step-ahead in-sample unreconciled forecast errors, which is 

𝑉𝑉𝑉𝑉𝑉𝑉[𝑦𝑦𝑡𝑡+ℎ −  𝑦𝑦�𝑡𝑡+ℎ|𝑦𝑦1,𝑦𝑦2, … , 𝑦𝑦𝑡𝑡]. 6 

Wickramasuriya, Athanasopoulos and Hyndman (2019) also showed that the reconciled forecasts will be at least as 
accurate as the unreconciled forecasts. Moreover, the reconciliation process takes into account the dependence 
structure across different levels of the hierarchy, which is particularly beneficial when dependence is ignored in the 
process of obtaining unreconciled forecasts for each individual time series. In our case, with a very large number of 
time series in the hierarchy, it is extremely challenging to use a joint modeling approach to producing forecasts, due 
to the curse of dimensionality. Therefore, the MinT reconciliation method becomes a particularly effective tool 
when we obtain unreconciled forecasts based on independent models. 

4 PROJECTING MORTALITY IN 2027 VIA MINT APPROACH 
In this section, we apply the MinT reconciliation method described in Section 3 to both death counts and population 
exposure. Based on the U.S. historical data from 1990 to 2017, we obtain the 10-year-ahead unreconciled forecasts 
by independent autoregressive integrated moving average (ARIMA) models at all levels. The Akaike information 
criterion is used to select the optimal ARIMA model for each time series in the hierarchy (Akaike 1974). Once 
reconciled forecasts for both the number of deaths and population exposure are computed, we use these forecasts 
to calculate the 10-year-ahead mortality rates at state level and national level. 

Table 2 shows mortality forecasts in 2027 for the top five and bottom five states, in terms of crude mortality rate 
and the percentage change in mortality. Compared to the figures for 2017 shown in Table 1, the top five states with 
the lowest crude mortality rates remain unchanged: District of Columbia, Florida, Arizona, Hawaii and Alaska 
continue to experience the most favorable oldest-old mortality experience in the country. Florida is also predicted 
to have a big mortality improvement over the next 10 years and overtake Hawaii to have the second lowest old-age 
mortality rates. On the other hand, Indiana and West Virginia remain in the bottom five states with the highest 
crude rates. In terms of percentage change in mortality, most states except South Dakota are predicted to have a 
reduction in the oldest-old mortality rates over the next decade. However, for many states, including Ohio, Iowa, 
Pennsylvania and Connecticut, the projected mortality improvement rates are rather marginal and insignificant. 

  

                                                                 

 

5 For a detailed explanation of the method, see Wickramasuriya, Athanasopoulos and Hyndman (2019). 
6 In this paper, we have used the “shrinkage” estimator of Wh as described in Wickramasuriya, Athanasopoulos and Hyndman (2019), Section 2.4. 
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Table 2 
MORTALITY EXPERIENCE FOR SELECTED U.S. STATES IN 2027 

Rank State Crude Rate Rank State Percentage Change 
1 District of Columbia 7.38% 1 Georgia −10.98% 
2 Florida 7.64% 2 Nevada −10.28% 
3 Arizona 7.89% 3 South Carolina −10.16% 
4 Hawaii 7.93% 4 Wyoming −9.97% 
5 Alaska 8.06% 5 Florida −9.74% 
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

47 Iowa 10.65% 47 Ohio −0.43% 
48 Indiana 10.67% 48 Iowa −0.37% 
49 Rhode Island 10.72% 49 Pennsylvania −0.16% 
50 West Virginia 10.74% 50 Connecticut −0.05% 
51 Ohio 10.83% 51 South Dakota  0.06% 

Note: The numbers in the table are based on the modeling results of the proposed method, using data gathered from Centers for 
Disease Control and Prevention (CDC), Wide-ranging Online Data for Epidemiologic Research (WONDER), accessed March 8, 2019. 

We plot the mortality forecasts and percentage change forecasts for all 51 states in Figures 4 and 5. Figure 4 shows 
that the old-age survival disadvantage across Southern states continues to exist. The highest mortality rate forecasts 
are generally observed in Rust Belt states such as Pennsylvania, West Virginia, Ohio and Indiana. Also, based on 
Figure 5, we observe marginal mortality improvement in a large number of states. It is anticipated that the mortality 
improvement rate will slow down in the next 10 years for a majority of states in the U.S., including those with 
extremely good mortality experience such as Hawaii. 

To provide a complete picture of the future mortality projections, we also plot the national-level forecasts for the 
period 2018–27 in Figure 6. It can be seen that males are predicted to experience a more rapid mortality 
improvement compared to females. However, we also observe a slowdown in the decreasing trend of mortality 
rates, especially in the case of female mortality rates. In fact, Figure 6 shows that the slowdown may have begun in 
the early 2010s. In addition, based on our forecasts, we find that the future total mortality improvement is more 
likely to result from improvement in male mortality rates. 
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Figure 4 
U.S. STATE-LEVEL OLDEST-OLD MORTALITY FORECASTS IN 2027 

 
Note: The information in this figure is based on the modeling results of the proposed method. 

Figure 5 
U.S. STATE-LEVEL PERCENTAGE CHANGE FORECAST IN OLDEST-OLD MORTALITY RATES 2017–27 

 
Note: The information in this figure is based on the modeling results of the proposed method, using data gathered from Centers for 
Disease Control and Prevention (CDC), Wide-ranging Online Data for Epidemiologic Research (WONDER), accessed March 8, 2019. 
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Figure 6 
OLDEST-OLD MORTALITY RATE FORECASTS IN THE U.S. FOR THE PERIOD 2018–27 

Note: The information in this figure is based on the modeling results of the proposed method, using data gathered from Centers for 
Disease Control and Prevention (CDC), Wide-ranging Online Data for Epidemiologic Research (WONDER), accessed March 8, 2019. 

5 CONCLUSIONS 
The geographical heterogeneity in mortality experience, especially among older age groups, remains an important 
issue to be addressed and investigated. In this paper, we propose a forecast reconciliation approach to predict U.S. 
oldest-old mortality rates. Coherent mortality forecasts are produced using the MinT reconciliation method by 
Wickramasuriya, Athanasopoulos and Hyndman (2019). Based on our forecasts, we find that the observed less 
favorable mortality experience in the Southern states are likely to continue in the next decade. We also find that the 
future mortality improvement rate will tend to slow down across a majority number of states. 

 

Han Li, Ph.D., is senior lecturer, Department of Actuarial Studies and Business Analytics, Macquarie University, 
Sydney, Australia. She can be reached at han.li@mq.edu.au. 
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