
SIMPLIFIED CREDIBILITY MATHEMATICS 

BY 

Joseph L. Tupper, III 
CUNA Mutual Insurance Society 

Madison, Wisconsin 

The conventional formulas for estimating risk means and variances are derived 
using techniques no more advanced than in Part 2 of the Society of Actuaries 
syllabus. The main tool is linear regression and a slightly simpler formula 
for variance credibility is given. 

Credibility is often described in terms of how much observations can be 
trusted. In insurance, we really want to know a true (but unknowable) value 
for a given parameter (such as claims) for one risk in a class of risks. 
Sometimes we have experience data for the risk to help us. The essence of 
credibility theory is to use the experience data to make a "best estimate" of 
the true risk parameter. 

Since the term "best estimate" is not clearly defined, credibility 
practitioners have all appealed to fitting "what we want" and "what we have" 
to a preassigned model. While it has not been stated in exactly this fashion 
anywhere I have looked, all credibility really does is construct the least 
squares line of best fit relating the "true risk parameter given the 
experience" and the calculated observed value based on risk experience". In 
other words, credibility theory is an application of linear regression. 
Moreover, "the credibility" of a risk is just the slope of this regression 
line. 

The development is handled in four sections as follows: 

1. A review of linear regression; 
2. A review of results on conditional expectations; 
3. Credibility in general (estimation of an unknown parameter); 
4. Estimation of Means and Variances. 

Sections 1 and 3 are quite straightforward once Section 2 is grasped. There 
is some complexity in Section 2 which seems to be unavoidable. The 
exposition attempts to warn the reader before it gets out of hand as it may 
be preferable to look at Sections 3 and 4 before spending too much time in 
Section 2. 

Section 3 does have one involved calculation set forth in full gory detail. 
This has been included because those of us who have not had much prior 
experience with conditional distributions seem to get lost somewhere in the 
middle. 
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"And now a word from our sponsor .•. " {M.Spivak, Differential Geometry) 

This paper was written to enable the practicing actuary to wade through the 
somewhat opaque mathematics behind credibility theory as painlessly as 
possible. The only real sacrifice has been to use probability density 
functions rather than measures. Densities permit writing a mean as 
"(~Hx.).!lf. " where a measure theoretic approach would write "] J1. .lf(lC) , and 
t~e usual relationship between f and F occurs. There is no such density for 
a coin toss {fair or unfair); but there is a measure. Since claims processes 
involve discrete as well as continuous distributions, measure theory has 
played a significant role in simplifying the notation of theoretical works 
and in providing stronger results more reflective of real world processes. 

Credibility theory is no exception. The beauty of measure theory is that 
with what seems to be a slight notational change, essentially from "fC~)Jt • 

to " J fCX) ", every result in this paper is true in a measure theoretic 
context. The expression of Bayes' Theorem is the only casualty. {Bayes' 
Theorem still works without a hitch, but the notation I've used would be 
inconsistent with a "measured" approach.) There is a great deal more to 
measure theory than a "notational change." In fact, careful readers of this 
paper will object to the implicit assumption in section 3 that the risks A 
have a continuous distribution. That implicit assumption is necessary unless 
we require all readers to be familiar with measures. 

Hans Buhlmann is credited with developing the notion of linking a linear 
approximation {i.e., a credibility estimate) with a least squares estimate. 
He has presented a excellent development in his risk theory text [1]. 
Several actuaries have faced difficulties with this text due to the level of 
mathematics employed: real analysis is not part of the SOA syllabus and 
Blihlmann's text is very difficult to appreciate without an understanding of 
real analysis. This paper recreates some of his results with mathematical 
tools of perhaps a more popular appeal. In addition, the form of the 
credibility estimate for £[o-I(A)/S,, ... , S.,) in Section 4 is simpler than 
in Buhlmann [1, pg. 105]. 

I believe that understanding the results of credibility theory does not 
require real analysis. However, applying credibility relies on using results 
that depend on the stronger definition of integration found with measure 
theory. For those readers interested in learning more on measure theory, the 
texts by Royden[2] and Rudin[3] are widely used. {Roydan is somewhat 
simpler; Rudin is more general). 
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1. A review of linear regression. 

For linear regression, we have observations of pairs (x,y) with y viewed as 
depending on x. To estimate y as a linear function of x, written ~N,~+b we 
have the problem of choosing "best" values of a and b. As is well known, the 
method of least squares produces values of a and b which minimize the expression 

i.. (. y; - 4.JI..; -b),.. 

where the pairs (~ •• ~. ).f~r i=l ton, are the observations. 

Finding a and b from this statement is a fairly simple minimum problem from 
calculus. One standard presentation of the final equation for the fitted line 
is as follows: t 1 Y· Et'I'J .:. Co" K,Vt.. (x- E.I:..X)) 

v-...-txJ 

(Notation: EL·) = expected value, Vart•.l =variance, CovC:;J = covariance) 

For credibility, we will need the "continuous case" presented below. 
the result is the same, this can be skipped. 

Since 

If the independent variable, x, is distributed with density f(x}, then yin 
(x,y) has a distribution conditioned on x, g(ylxl and (x,y) has joint 
distribution. h(x,y)=g(ylx)f(x). 

The regression problem now is to find a and b to minimize: 

.S(o..1 b) = SJ Cj-CLt-b )l..~(~\JI) f(x) J.j ch 

by calculating partial derivatives 

?~ "' -H\:.x'l') ~ ~ ... Hx'") +~~~[;I) 
and v.s - :. 

H 
- ~ E(r) + 2.-. E[.x) + llo 

Setting the partials equal to zero and solving, we find 

and 

so, 

~::. €(lC'I'J- Eb) E[. V] = 
E.l:lf'"l- 'CxJ'" 

b -= H·'l')- ~E(x) 

~:D. X+ E('\')-o~~.((t) 

regrouping, ~- tL'I'): -.(x~ £(.x)) 

and 

as before. 

= C.o" [X, 'f) 
v ... .-[::XJ 

(~e-f.D<l) 
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2. A review of results on conditional expectations. 

We will need three things about conditional expectation and densities in 
Section 3. Two are computational rules and the third is Bayes' theorem 
{otherwise known as changing the order of integration). 

A conditional expectation arises whenever a set of individuals divides 
naturally into subsets. An example is all claims incurred under group 
contracts. These divide naturally into subsets of claims incurred within 
each insured group. 

The rules are the following two equations: 

Rule 1. E [s) = E [[[~lAJ) 

Rule 2. \l,..r['>l: £[11a...(~IAJ)+- .,. ... ,..[ HsiAl) 

Before we can prove these rules, we will need to set the stage for Bayes' 
theorem. This will show that the first rule means: if we take all 
observations and divide them into categories A1 , A~, etc., then over each 
category A;, , we have an average ECsiA;."l. E{Siat) is to be thought of as a 
function of the risk ~alone. Also, each category A; has a weight and the 
weighted average of the £(~(A;) is just the mean overall observations 
or [(S] . An example to keep in mind is average claim size. Then S is claim 
amounts and E[S] is the average claim size. E[S(A;] is the average claim 
size for risk AL . 

S is something we are observing. 
S has a density f{s), and 

E [s) = J s .fcs) Js 

Somehow, the observations of S are divided into subsets A {we are not 
concerned with the method). 

For each category, A, there is a density of S written f~IA). Also there is a 
probability distribution~~) which links the subsets together: ~(~ is the 
probability that a random observation of S belongs to the subset A. The 
joint density satisfies '(s,A): f(11A)~o.(A) 

These notions are connected as follows: 

f(-.) = j fesiA) ~o.(AHA = j ,(s,A) JA 
and 

[('>\A) ,. J,~(s\A)4.~ 
We prove Rule 1 by direct calculation: 

{ ( E[SIA) J == J [l~IA] "'(A)J4 = j ( j ,fcs\A)Js] .._(A) JA 

= JJ dlsiA) ... (A)J,JA =- Jj s~(•,A)JsdA-

= js [ J j(s1 A)JA]Js = fs~(s).ls 
""£(.<.;) 
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Rule 2 is also a calculation: 
1/tU[S): E(s")- E.ls]'-

~ E[saJ- t[£Ls1At] + E[!lSl~J .. ] -~Is) .... 

• E [ l(S ... IAJ]- H H~I~J .. ) + HHs1Al'1 - H Hs1AJ1"~
= flHs'IAJ - EtsiAl'] + f[ ECSI~) .. ] - ELHSI,.lJ'

= f (va..-tsiA1] + V,_,. (H.S\1111 
While this algebra may seem a bit dense, line 2 introduces a convenient 
representation of zero, line 3 uses rule 1 on the first and last terms, line 4 
just aggregates the first and secqnd terms which are both expectations over A's, 
and line 5 is just the definition of variance (twice). 

Rules 1 and 2 were derived using the one half of Bayes' theorem: 

The other half of Bayes' theorem is the part we will need in Section 3. We 
need a new probability distribution for A given a value for S, 
denoted ~(A Is) This satisfies: 

~Cs,A) ::. k.(AI~) f(s) 
We will use: 

and its generalization: 
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3. Credibility in general (estimation of an unknown parameter). 

To begin the general analysis, let us take inventory. We have available the 
following: 

- A collection of risks, A, and a probability density function, u(A), 
reflecting the weight assigned to each risk. 

- A set of observations ,,, ... ,$. of some parameter S (e.g., average 
claim size or variance of claim size). These observations are attached 
to a particular risk. The parameterS has a density f(s) over all 
risks or f(sl A) if restricted to the risk A. 

- An unbiased estimator of the parameter S: Y = !" ( S,, ... , s.) 
(i.e., 5 is a function of S,. ... ,Sn ). 

In practice, u(A) is the weight to assign each risk so that rule 1 of Section 
2 will work for observations of the parameter 3. 

We want a best estimate of the "true mean" of S at a risk, A. That is, we 
want EC.SIAl denotedr(A) We will also use ~>.(A)=""-.-(sjA]. Since _,-CA) is 
unavailable, the next best estimate answers the question, "What do we 
expect~ to be given s,, ... , s, ?" Translated to symbols, this 
is ECr~l s,, ... 's,.) . 

In the real world, f(s) and u(A) will not really be available, but experience 
data for the collection of risks can be used to approximate what we need. 

S must be unbiased. In particular, r must provide an unbiased estimator 
of _,.dA). That is, £[S l~] = /'"(4) . Since we will be most concerned with 
means and variances, it is enough to know that such unbiased estimators 
exist. 

Look again: We have 1 we want E[;, ... (A) Is,, ···J ~ .. ) 
regression with x:~ and :!""' E.()"'!A'll<>, , ... , .... ) . 

Let us try linear 

From Section 1, we can write the equation of the regression line immediately: 

The rest of this section transforms this to 

with 

Section 4 will analyze ~ further when estimating means and variances. 
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First let us transform the regression line equation to 

H)'CA>Is.,, ... ,s .. J "-~ ~-~ + (1·'1;)· [.[rO·>] 
Since the expectations are over all possible '', ... 1 S,. , 

(1) [.l~) ::: H.,.AC4)] by the assumption that S is an unbiased 
estimator of~(A). ( E.[S) = £ [EC5fA,J],. £~C!.)) ) 

The convention is to write E:[~£,.4).) rather than use/"'=- £(,o. {A)] . This highlights 
the importance of the risks. 

Thus our regression line equation is 

H_r{.->ls,J ... )<>")- E[,rlA>J .v ~(s- H.,ACA.>J) 
with 

which transforms into the familiar E~(,Aljs,, ... , S,)"' l· ~ t- (I·!) · E[}'(A)1 

We still need to analyze z. 

Using Rule 2 of Section 2, expand the denominator ofl : 

VA.r(0 =- E[va ... niAJ]+-V"""([(SJAJ): £(v,.,.z:J'IAJ) +V._.,..[_r(M) 

The numerator of ~ must be handled explicitly. This is where the comments 
on Bayes' theorem apply. The important idea is that we are really just 
switching the order of integration and shuffling symbols. 

Now, 
Co~('3.1:trCA)\s., ... ,s .. J):. t(~ ·Eftl~l~., ... ,'>.1)- tU) ·E.(EY,.(A>(s., ... , s..)] (1) 

.: J .. JHY.tA>Is., •. ,s.J{(s,> .. ·f(S.)JS, .. ·-!5_- £[i-CA))·EY.£NJ (2) 

: j .. · J S L JrW CA.(IIIS., .. ,s")~)~s,) ... f<s,.)JS,···JS" - f~)J (J) 

= J .. .ff~CA)[....(Ais., ... ,s..)f(s,)· .. +(S.)]JAdS.· .. ci.S. -E~CA>1"" (4) 
[Note use of Bayes' Theorem] 

= f J. ··} ~(A) [f(r, lA) ... ~(s.IA) "'-(A )J clS, ... .Is • .lA - E[i..C")t < 
5 
> 

= j,/4(A) EUIAJ u.LA) .1." EC,....(A)J\.. 
{6) 

::. j _,.....(A)a. ~(A) c!.ft - tr,,-.(A))l. 
{7) 

:. E.trCA)a. J - E.Y...(A)J'" (8) 

= Vv [/(A)) {9) 
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The step from line 6 to line 7 again makes use of 1 as an unbiased 
estimator of ,r{J.) The rest is definitions and Bayes' theorem. 

Thus, i:.. CovL 3,-eC,..c.aji., ... ,s.))- v .... of'(rWJ 
v ...... lt) ~ vu-cn 

= 

This concludes the general developement. The rest of credibility theory has to 
do with particular choices of estimators J.,.!(S,J ... Js~) of the parameters we wish 
to study. 
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4. Estimation of Means and Variances 

As stated at the end of Section 3, the main trick in credibility theory is 
finding an unbiased estimator for the parameter under observation. In this 
section the credibility levels, a, for means and variances will be 
discussed. 

In rules 1 and 2 from section there are three terms needed to calculate total 
means and variances. Two of the three have a reasonable interpretation for 
the risk:J:;J:.,...(~)js., ... , s.J and E.(,.•(4)ls., ... , s.) . Comparing these with 
rules 1 and 2, a third item is suggested: Vo.rtrCA)Is., .. ~c.). Biihlmann [1,pg. 
99] relates this component to the "fluctuation part" of his credibility 
premium concept. 

For means, our unbiased estimator is 

E[$1.4) = rC4) 

v~ r :s 1.4] = "- r<A> 
Now 

= 

: 

.; .. ,.~c..>) + t E[r('A)) 

Rearranging, 
VI 

'2;c t:: [ r•(A).l 
rl .. 

1/-.., Y.,CA>] 
Writing 

E( '''(A)) 
t<= V...,\"' y.LA>) 

We have 
~,. 

~ 

"'+1<. 

For variances, we are first looking for a credible estimate of r~(A) 
given ,,, ... ,s, . To keep the notation straight,,tW'I) and! of section 3 are 
replaced by the analogous symbols for variance: 

'J' becomes r•• -L z ( S·- iJ:a... and ,..(AJ becomes r•(A) 
.... &-1 ' , 

.l~ is our unbiased estimator of r&(A) f ( .r•j,A) = r'(A) 

This time £'[o-~A))s,J'"'Js .. )"' 2· z:.2. + .(l-l.) f[,.'-(A>] 
with 

c= 
o/~r [r'(-1)) + £[11/Lit' [. t:"\ A)) 
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Calculating Vo.r [ r' lA) is an exercise for the reader. The formula below is 
presented in BUhlmann [1, pg. 104) without complete proof. Since my 
derivation of it takes several pages and sheds little extra light, it is not 
included. The following is an explanation of the results. 

Let '1 ... CA)= E[ ts-,.c.A)J~ \A) _ l This is called the "excess." (Excess 
r*{A) kurtosis over a normal distribution.) 

Then 

This can be rewritten 1/u [ 2:'/A] 

Substituting in ~ we have 

~.:. 
~~ .... ~ ( crL(A)] 

V ... v [ cr•(A)] + f [ IIU" (rL lA)] 

Rearranging: 

Where 

1-(, = 

and 
I(,_ = 

l" 
~a. ... r~'"(A) J 

v ... ,.. [ ,. .. (4)) + E [ r't~t.(A) 

11( 11-1) 
r~ 

r.("·') -t ~-1') K, + ~ K ... 

£[ r'ICA)'t,CA>) 
\/'"-.... C cr'(A)J 

~ Hr'I(A)) 
Vvtr'(A)) 

~ 9-rl~) J 

The numbers K, K1 and K:a. I have taken to calling "50%" credibility levels. 

For \1.,.. [,..(A) IS",, ···~S,.) there is no obvious candidate for an unbiased 
estimator. However, if there is no way to differentiate between risks we 
always have: 

YM [/"{A) /s,) ... j s"] "" E [ v.....-r;,..-u>l s., ... , s .. )) 

Moreover, as Buhlmann observes, we have an estimate o~C.> given ~., ·-·, 5" 
Following this through, as on the next page, we find 

1/A.,.. CrcA) Is,, ... , s .. ) ,... (1- .. ~ ) v~.- [;-.CA>] 
with K defined as for the mean. 
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Then 
E[v4.1'"C_rlA)Js. 1 ·•· 1 s .. )1,.., E[e[ l,r£.4)-.r~-c~--e)EY.l..t>J]'js,) ... ,s .. )] 

~ l\. c~t(A)-~:s-c,--)E~c ... nrJ 

: [ [ {(_.~'{A)- CY.C.A>]] - a r~- r(/'CA>)Jf'J 
.,.. £[ {~>- f~{f)JJI.)- .:litE [f,t-CAJ-f(rc.A>J][r- EY,.<A>JJ] 

... i~ · r [ l s- tY.,W) r 1 

... V"-v[_r(A)] - ;,:l E [ E {f.I'CA)-E~l.of>]Hr-ey...< .. >J1 \A]) 
-t "1.... v c-t [ ~ ] 

-= Va.r lflA)) - .t 1: f [ [....c-t)-fLr(A>]] r~AJ- EY..cA>J] J 
+- ~l.v'<l..-[SJ 

[ r [ [ "1:&..] ~ &~y...-[5] = VH ~ CA> 1 - ~~ c: ytc-+)- f r/~4)J} 

,. Vu[.I"-(A))- ~~ VA.Y"~(.-4)]-+ iL v ...... [s] 

= v ... r Lr v.u (I-~ "A) + ( Ve..-r tr(A)) )~. VM [. S) 
v .. ~rr) 

:: V6...- [_r. (A)) ( ,_ u) ~ f\14..- [/'(A) J) 1/Ml.,I'<.(A) J 
\ v'-...-crJ 

-:::. Va..,- [/'"CA)] ( 1-U) + c•Va..-y..(A)] 

= (,- z.) Vo."" f..!-..o> J 

== ( 1- ... ~~<-) V(U'"C,...C4>] 
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Summary and Applications 

The building blocks for credibility estimates are: 

'[)'-(,4)) 

vu lj'<A)) 

H rt(A)) 

E (.~'lcM) 

r [ r'fCA> t .. w J 

These five numbers must be estimated from historical data. To do this, there 
are many different approaches, but two very different approaches should at 
least be considered. The first is to assume particular distributions 
{Poisson, normal, binomial, etc.) and use data to estimate a fit. BUhlmann 
presents an example of this [1, pp.106-109]. The second approach is to use 
the experience data to directly estimate the building blocks, at a risk 
level, and then to use the risks which are "more credible" [higher u{A) is 
close enough] as an approximation to the true distribution. This bypasses 
the need to construct {numerically) the explicit distributions. 
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