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Rearession Models in Morbidity Estimates 

Abstract 

A statistical model is presented which analyzes group 

health and dental data. The purpose is to determine the cost 

of these benefits with special reference to the effects of 

various characteristics of individuals in the group. 

The methodology involves a combination of a binary 

logistic regression and a normal multiple linear regression. 
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Regression Models In Morbidity Estimation 

We are interested in the group insurance premium for any or 

all of the following benefits: 

i) drug benefits 

ii) hospital coverage (private or semi-private) 

iii) vision care 

iv) dental insurance 

v) supplementary health insurance (e.g. ambulance, wheelchair, 

etc.) 

In particular, we wish to determine the effects of an individual's 

characteristics on the cost of supplying these coverages. 

We denote by 

Lti = (xil' xi2'" • • • ,xip) 

a given set of covariates which may include 

i) age 

ii) sex 

iii) occupation 

iv) location of residence 

v) marital status 

among others. 

For example, we might have 

xil 1 if 18 .. ar:Je 

0 otherwise 

xi2 1 if 35 ~ age 

0 otherwise 

< 

< 
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xi3 1 if 50 ~ age < 65 

0 othe:r:wise 

xi4 1 if sex is male 

0 if sex is female 

etc. 

If we denote by X the total claim amount for an individual for 

the premium paying period then we are interested in the random 

variable 

X I x. 
-l. 

or, more specifically, the first couple of moments of its 

associated distribution. 

He assume we have the total amount of claims for each individual 

in the study for a period of time at least as great as the premium 

payment period (to eliminate the effects of seasonality on the 

claims). Furthermore, assume that all claim amounts are strictly 

positive so that X=O implies no claims occurred. 

Then, 

Pr {X=xlx.} = Prh.lclaimlx.}•Pr{X=x I x., ~l claim} 
-l. -l. _l. 

We will estimate the two quantities on the right hand side of 

this equation separately. 

Let us divide the data into n groups such that all covariates in 

a given group are equal (or roughly so). Suppose in group i there 
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are ni individuals, di of which have at least 1 claim. Let us assume 

that x. is the covariate vector of the ith group. 
-~ 

Part 1 - Logistic Regression 

Let 

p. = Pr 
~ { ~ 1 claim [ x.} 

-~ 

Then it is reasonable to assume that di is an observation from 

a binomial variate with parametersni and pi. 

P· 
~ 

where 

e 

Let 

B1x. 1 + ••• + B x. 
e ~ P ~n 

B 1x. 
1
+ ••• + B x. 

1 + e ~ P ~P 
x. B 

1 + e -~ -

e . 
~ ~i 8 

e. 
e ~ 

e. 
1 + e ~ 

Then we are interested in making inferences about B. 

For notational simplicity, let 

i e 1 • X ' 
-1 

e2 ~2 
X 

B 

en n X 1 X 
, -n: n X p 
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TO get estimates for 13 , we use likelihood 

x. 13·d. 
n -l. - l. 

( 8 ) IT e (since d. is L x. 3 n. l. 
i=l (l+e-l.-l l. 

e. d. 
n l. l. 
IT e 

(). n. 
i=l (1 + e ].) l. 

Calculate the score function 

s ( 13 
a log 

a13i 
L ( 13 ) } 

pxl 

x.3 
-l.-n nixije 

1: ( d X. - x.s i=l l. J. J 
1 + -l.-e 

and the information matrix 

I ( 13 

n 
{ -
i=l 

a 2 loq L ( ~ l 

a 13j a 13k p x p 

methods. 

binomial) 

l} 
~ 

pxl 

then the estimates 3 may be calculated interatively using Newton-

Raphson techniques as follows ( ~ i is the value of 13 from the i th 

interation) untll ~ i is sufficiently close to ~i-l" 
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To get a starting value ~ 0 , we go back to the likelihood as a 

function of e. 

and so 

L ( e > 

e. 
-J 

We have 

e.d. n 1. 1. 
II .:::e~-...,.....-

. 1 e 0 n. 
1.= (1 + e 1.) 1. 

d. 
log 

It can be shown using large sample theory techniques that 

(asvrnptotically) 

n. 
e. - N { e. , 
J J 

n. 
or log 

which is the usual weighted least squaresrnultiple regression model. 

Thus, if this were the true result, we would have 

where 

v nxp 

d. 
n.-ct. 

J J 

y 
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II' I 

,Ill' 

This can thus serve as a good starting value for 8 (ie. as ~ 0 ). Note 

that if dj 0, it is recommended to replace 

d. o.s log n.- d. by log 
nj + 0. 5 J J 

and if d. nj, replace 
J 

d. n. + 0.5 
log n.- d. 

J J 
by log 

0.5 

in theY matrix above so that 8. * oo. ~his does not affect the 
J 

1 II" final answer. 

'L 

·'I 

1111 

I 
rl· • 

~j II 

,,, 

~I 

From large sample theory, it can be shown that 8 is approximately 

normal with mean 8 and variance covariance matrix r- 1 ( ~). Thus, 

the usual tests can be applied to the solutions 8 for inference 

purposes (ie. to test whether ~i = 0 so that the corresponding 

covariates may be dropped) • 

To test the fit of the model, a one-tailed test involving the 

chi-squared statistic 

(di 
'A 2 

2 n - nipi) 
X (n-p) L: A A where 

i=l nipi (l - pi) 

e 
x.8 
-~-

(large values give evidence against the model). 
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Part 2 - Multiple Linear Regression 

In order to consider 

X \ ~i ;;. 1 claim 

we consider only the di individuahwho had claims. 

the total claim amount for person j, group i. 

Our model is 

f(T ) N { + cr 2} 
ij- TlXil ••• +TpXip' 

Let T .. be 
l.J 

where f is chosen so that the data appears to be roughly normal. 

Appropriate choices of f include the following 

f(x) = x 
f(x) log x 

f(x) Jx 

among others. 

Let 
dj 

l: YiJ./dJ. 
j=l 

Then 

The least squares estimates of T are then 

= (VTV)-l VT Z 

where 

v { ICfi xij} nxp' 

-203-



and 

An estimate of c 2 
is 

d. 
n l. 

L: L: 
(y ij 

- 2 - yi) s 2 i=l j=l 
1 n 

<ih d.) - n 
l. 

To test the fit of the model, compute the F statistic 

F n 
n-p, (j_~l di)-n s 2 

1 

(n-p) 

This is the ratio of the "lack of fit" sum of squares to the "pure 

error" sum of squares. A one-tailed test is appropriate. If the model 

is good, a better estimate of a2 is 

n 
L: 

i=l 

d. 
l. 

L: 
j=l 

This problem could have been formulated as a weighted least 

squares problem with identical results. The use of the mean rather 

than the original data is primarily to cut down on the computing 

time. 
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Part 3 The Distribution 

We may now compute the distribution of 

The density for x > 0 is 

f (x} - X. T 

gi (x) P· cp { 
A 

-l-} 
l a 

2 
X 

where -1 
cp (x) e 

~ 

Also 

gi (0) PriX Olxil l -

and 

E{XIx.l 
-l 

xlx .. 
-l 

!_'_(x) 

a 

I:+ gi(x)dx 

For a deductible of amount c, we are interest in the random 

variable 

w 1 x. 
-l 

max { X- c, 0 } I x. 
-l 

and Pr {W = 0 I ~i} Pr { x
1
. ,< c I x. } 

-l 

and the density for x > 0 is 

gi (x + c) 

The expected value is 

~ (X - C) g i (X) dx 

I wish to thank Dr. R. J. Mackay and Dr. J. G. Kalbfleisch of 

the University of Waterloo for their extremely helpful advice and 

support in this venture. 
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