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QFI QF Model Solutions 
Fall 2023 

 
 
 
 
1. Learning Objectives: 

1. The candidate will understand the foundations of quantitative finance. 
 
3. The candidate will understand: 

• How to apply the standard models for pricing financial derivatives. 
• The implications for option pricing when markets do not satisfy the common 

assumptions used in option pricing theory. 
• How to evaluate risk exposures and the issues in hedging them. 

 
Learning Outcomes: 
(1a) Understand and apply concepts of probability and statistics important in 

mathematical finance. 
 
(1b) Understand the importance of the no-arbitrage condition in asset pricing. 
 
(1c) Understand Ito integral and stochastic differential equations. 
 
(1e) Understand the Black Scholes Merton PDE (partial differential equation). 
 
(3a) Demonstrate an understanding of option pricing techniques and theory for equity 

derivatives. 
 
Sources: 
An Introduction to the Mathematics of Financial Derivatives, Hirsa, Ali and Neftci, Salih 
N., 3rd Edition 2nd Printing, 2014 (Ch. 3, 10, 12, 13) 
 
Commentary on Question: 
Commentary listed underneath question component. 
 
Solution: 
(a) Derive 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
 and 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
 in terms of the partial derivatives of the vanilla call.   

 
Commentary on Question: 
Most candidates were successful in this part. It is a straightforward application of 
the derivative operator. The most common error was not invoking the chain rule 
properly for 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
. 
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1. Continued 
 
For simplicity, write 𝐶𝐶 �𝐵𝐵

2

𝜕𝜕
,𝐾𝐾, 𝑡𝑡� = 𝐶𝐶 �𝐵𝐵

2

𝜕𝜕
�. 

 
𝜕𝜕𝜕𝜕
𝜕𝜕𝑡𝑡

=  𝑆𝑆𝛼𝛼
𝜕𝜕
𝜕𝜕𝑡𝑡
�𝐶𝐶 �

𝐵𝐵2

𝑆𝑆
�� = 𝑆𝑆𝛼𝛼

𝜕𝜕𝐶𝐶
𝜕𝜕𝑡𝑡

 

 
 
 

𝜕𝜕𝜕𝜕
𝜕𝜕𝑆𝑆

=  
𝜕𝜕
𝜕𝜕𝑆𝑆

�𝑆𝑆𝛼𝛼𝐶𝐶 �
𝐵𝐵2

𝑆𝑆
�� 

=
𝜕𝜕
𝜕𝜕𝑆𝑆

[𝑆𝑆𝛼𝛼]𝐶𝐶 �
𝐵𝐵2

𝑆𝑆
� + 𝑆𝑆𝛼𝛼

𝜕𝜕
𝜕𝜕𝑆𝑆

�𝐶𝐶 �
𝐵𝐵2

𝑆𝑆
�� 

= 𝛼𝛼𝑆𝑆𝛼𝛼−1𝐶𝐶 �
𝐵𝐵2

𝑆𝑆
� +  𝑆𝑆𝛼𝛼 �

−𝐵𝐵2

𝑆𝑆2
�
𝜕𝜕𝐶𝐶
𝜕𝜕𝑆𝑆

 

= 𝛼𝛼𝑆𝑆𝛼𝛼−1𝐶𝐶 −  𝐵𝐵2𝑆𝑆𝛼𝛼−2
𝜕𝜕𝐶𝐶
𝜕𝜕𝑆𝑆

 
 

 
(b) Show that  𝜕𝜕

2𝜕𝜕
𝜕𝜕𝜕𝜕2

  = 𝛼𝛼(𝛼𝛼 − 1)𝑆𝑆𝛼𝛼−2𝐶𝐶 − 𝐵𝐵2(2𝛼𝛼 − 2)𝑆𝑆𝛼𝛼−3 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝐵𝐵4𝑆𝑆𝛼𝛼−4 𝜕𝜕
2𝜕𝜕

𝜕𝜕𝜕𝜕2
  

 
Commentary on Question: 
Candidates who were successful on part (a) were generally successful here as 
well. The problem again required use of the chain rule in applying the derivative 
operator. 
 
Let 𝐶𝐶 = 𝐶𝐶 �𝐵𝐵

2

𝜕𝜕
,𝐾𝐾, 𝑡𝑡�. 

 
𝜕𝜕2𝜕𝜕
𝜕𝜕𝑆𝑆2

=  
𝜕𝜕
𝜕𝜕𝑆𝑆

�
𝜕𝜕𝜕𝜕
𝜕𝜕𝑆𝑆
� 

=
𝜕𝜕
𝜕𝜕𝑆𝑆

�𝛼𝛼𝑆𝑆𝛼𝛼−1𝐶𝐶 −  𝐵𝐵2𝑆𝑆𝛼𝛼−2
𝜕𝜕𝐶𝐶
𝜕𝜕𝑆𝑆
� 

=
𝜕𝜕
𝜕𝜕𝑆𝑆

[𝛼𝛼𝑆𝑆𝛼𝛼−1𝐶𝐶 ]–𝐵𝐵2
𝜕𝜕
𝜕𝜕𝑆𝑆

� 𝑆𝑆𝛼𝛼−2
𝜕𝜕𝐶𝐶
𝜕𝜕𝑆𝑆
� 

= 𝛼𝛼(𝛼𝛼 − 1)𝑆𝑆𝛼𝛼−2𝐶𝐶 + 𝛼𝛼𝑆𝑆𝛼𝛼−1 𝜕𝜕
𝜕𝜕𝜕𝜕

[𝐶𝐶] − 𝐵𝐵2 �(𝛼𝛼 − 2)𝑆𝑆𝛼𝛼−3 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑆𝑆𝛼𝛼−2 𝜕𝜕
𝜕𝜕𝜕𝜕
�𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
��  

= 𝛼𝛼(𝛼𝛼 − 1)𝑆𝑆𝛼𝛼−2𝐶𝐶 + 𝛼𝛼𝑆𝑆𝛼𝛼−1 �−𝐵𝐵
2

𝜕𝜕2
� 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
− 𝐵𝐵2 �(𝛼𝛼 − 2)𝑆𝑆𝛼𝛼−3 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
+ 𝑆𝑆𝛼𝛼−2 �−𝐵𝐵

2

𝜕𝜕2
� 𝜕𝜕

2𝜕𝜕
𝜕𝜕𝜕𝜕2

�   

= 𝛼𝛼(𝛼𝛼 − 1)𝑆𝑆𝛼𝛼−2𝐶𝐶 − 𝛼𝛼𝐵𝐵2𝑆𝑆𝛼𝛼−3
𝜕𝜕𝐶𝐶
𝜕𝜕𝑆𝑆

− 𝐵𝐵2(𝛼𝛼 − 2)𝑆𝑆𝛼𝛼−3
𝜕𝜕𝐶𝐶
𝜕𝜕𝑆𝑆

+ 𝐵𝐵4𝑆𝑆𝛼𝛼−4
𝜕𝜕2𝐶𝐶
𝜕𝜕𝑆𝑆2

  

=   𝛼𝛼(𝛼𝛼 − 1)𝑆𝑆𝛼𝛼−2𝐶𝐶 − 𝐵𝐵2(2𝛼𝛼 − 2)𝑆𝑆𝛼𝛼−3
𝜕𝜕𝐶𝐶
𝜕𝜕𝑆𝑆

+ 𝐵𝐵4𝑆𝑆𝛼𝛼−4
𝜕𝜕2𝐶𝐶
𝜕𝜕𝑆𝑆2
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1. Continued 
 
(c) Determine the value of 𝛼𝛼 such that 𝜕𝜕(𝑆𝑆, 𝑡𝑡) satisfies the Black-Scholes PDE.   
 

Commentary on Question: 
Candidates performed below expectation on this part. Most did not get beyond 
substituting prior results for the partial derivatives of V(S, t) into the Black-
Scholes PDE. Some candidates attempted to guess a simple value for α, e.g. α =
1.  A key step was to recognize that after substituting for the partials of V(S, t) to 
establish a PDE in terms of a call option, we could leverage another PDE we 
know that call satisfies, i.e. the Black-Scholes PDE. From there, the rest of the 
problem is largely aligning terms and performing some algebra. 

 
For 𝜕𝜕(𝑆𝑆, 𝑡𝑡) to satisfy the Black-Scholes PDE, we must have 
 

𝜕𝜕𝜕𝜕
𝜕𝜕𝑡𝑡

+
1
2
𝜎𝜎2𝑆𝑆2

𝜕𝜕2𝜕𝜕
𝜕𝜕𝑆𝑆2

+ 𝑟𝑟𝑆𝑆
𝜕𝜕𝜕𝜕
𝜕𝜕𝑆𝑆

− 𝑟𝑟𝜕𝜕 = 0 
 
Substituting results from prior parts, we find 
 
 
𝜕𝜕𝜕𝜕
𝜕𝜕𝑡𝑡

+
1
2
𝜎𝜎2𝑆𝑆2

𝜕𝜕2𝜕𝜕
𝜕𝜕𝑆𝑆2

+ 𝑟𝑟𝑆𝑆
𝜕𝜕𝜕𝜕
𝜕𝜕𝑆𝑆

− 𝑟𝑟𝜕𝜕

=  𝑆𝑆𝛼𝛼
𝜕𝜕𝐶𝐶
𝜕𝜕𝑡𝑡

+
1
2
𝜎𝜎2𝑆𝑆2 �𝛼𝛼(𝛼𝛼 − 1)𝑆𝑆𝛼𝛼−2𝐶𝐶 − 𝐵𝐵2(2𝛼𝛼 − 2)𝑆𝑆𝛼𝛼−3

𝜕𝜕𝐶𝐶
𝜕𝜕𝑆𝑆

+ 𝐵𝐵4𝑆𝑆𝛼𝛼−4
𝜕𝜕2𝐶𝐶
𝜕𝜕𝑆𝑆2

 � + 𝑟𝑟𝑆𝑆 �𝛼𝛼𝑆𝑆𝛼𝛼−1𝐶𝐶 −  𝐵𝐵2𝑆𝑆𝛼𝛼−2
𝜕𝜕𝐶𝐶
𝜕𝜕𝑆𝑆
� − 𝑟𝑟𝑆𝑆𝛼𝛼𝐶𝐶

= 𝑆𝑆𝛼𝛼 �
𝜕𝜕𝐶𝐶
𝜕𝜕𝑡𝑡

+
1
2
𝜎𝜎2(𝐵𝐵4𝑆𝑆−2)

𝜕𝜕2𝐶𝐶
𝜕𝜕𝑆𝑆2

+ (𝐵𝐵2𝑆𝑆−1)�(−𝛼𝛼 + 1)𝜎𝜎2 − 𝑟𝑟�
𝜕𝜕𝐶𝐶
𝜕𝜕𝑆𝑆

+ �
1
2
𝜎𝜎2𝛼𝛼(𝛼𝛼 − 1) + 𝑟𝑟𝛼𝛼 − 𝑟𝑟�𝐶𝐶� 

 
All terms include a factor of 𝑆𝑆𝛼𝛼, so we may factor it out and simplify the 
expression in terms of partial derivatives with respect to the vanilla call option, 𝐶𝐶. 
For the Black-Scholes PDE to be satisfied, the expression within the curly 
brackets must be equal to 0. 
 
We can leverage the fact that as a vanilla call option, 𝐶𝐶, also satisfies the Black-
Scholes PDE, but where the underlying is 𝐵𝐵

2

𝜕𝜕
, rather than 𝑆𝑆 directly, requiring the 

modified form of the Black-Scholes for 𝐶𝐶 to be: 
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1. Continued 
 

𝜕𝜕𝐶𝐶
𝜕𝜕𝑡𝑡

+
1
2
𝜎𝜎2 �

𝐵𝐵2

𝑆𝑆
�
2 𝜕𝜕2𝐶𝐶
𝜕𝜕𝑆𝑆2

+ 𝑟𝑟 �
𝐵𝐵2

𝑆𝑆
�
𝜕𝜕𝐶𝐶
𝜕𝜕𝑆𝑆

− 𝑟𝑟𝐶𝐶 = 0 

 
 
Equating the coefficients, of 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
 for example, in each PDE implies: 

 

(−𝛼𝛼 + 1)𝜎𝜎2 − 𝑟𝑟 = 𝑟𝑟 ⟺ 2𝑟𝑟 =  (1 − 𝛼𝛼)𝜎𝜎2  ⟺
2𝑟𝑟
𝜎𝜎2

= (1 − 𝛼𝛼)  

⟺ 𝛼𝛼 = 1 −
2𝑟𝑟
𝜎𝜎2

 
 
(d)  

(i) Describe the payoff for both a down-and-in call and a down-and-out call, 
each with no rebate.   
 

(ii) Derive the formula for a down-and-out call option with respect to a vanilla 
call and down-and-in call with the same parameters.   
 

(iii) Explain why the response in part (ii) implies that the down-and-out call 
option price also satisfies the Black-Scholes PDE.   

 
Commentary on Question: 
Candidates performed reasonably well on parts (i) and (ii), but below expectation 
on (iii).  

 
(i) Down-and-in call: If the underlying stock price hits the barrier below 

during life of option, the payoff is identical to that of a vanilla call. Else 
there is no payoff. 
 
Down-and-out call: If the underlying stock price hits the barrier below 
during life of option, the option has no payoff. Else the payoff is the same 
as a vanilla call at maturity. 
 

(ii) A portfolio that holds both a down-and-in call and down-and-out call 
option with the same parameters will yield the same payoff as vanilla call. 
So, to avoid arbitrage, the value of such a portfolio should be equivalent to 
a vanilla call.  
 

𝐶𝐶𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 =  𝐶𝐶𝑑𝑑𝑑𝑑𝑑𝑑𝑣𝑣−𝑣𝑣𝑣𝑣𝑑𝑑−𝑣𝑣𝑣𝑣 + 𝐶𝐶𝑑𝑑𝑑𝑑𝑑𝑑𝑣𝑣−𝑣𝑣𝑣𝑣𝑑𝑑−𝑑𝑑𝑜𝑜𝜕𝜕 
 

⟹ 𝐶𝐶𝑑𝑑𝑑𝑑𝑑𝑑𝑣𝑣−𝑣𝑣𝑣𝑣𝑑𝑑−𝑑𝑑𝑜𝑜𝜕𝜕 =  𝐶𝐶𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 − 𝐶𝐶𝑑𝑑𝑑𝑑𝑑𝑑𝑣𝑣−𝑣𝑣𝑣𝑣𝑑𝑑−𝑣𝑣𝑣𝑣 
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1. Continued 
 
(iii) Given 𝛼𝛼 from part (c), we know 𝜕𝜕(𝑆𝑆, 𝑡𝑡) is a solution to the Black-Scholes 

PDE. Since the price of a down-and-in call is given as �𝜕𝜕
𝐵𝐵
�
𝛼𝛼
𝐶𝐶 �𝐵𝐵

2

𝜕𝜕
,𝐾𝐾, 𝑡𝑡� =

1
𝐵𝐵𝛼𝛼
𝜕𝜕(𝑆𝑆, 𝑡𝑡), it must also be a solution. 

 
The formula of a down-and-out call option is a linear combination of a 
vanilla call and a down-and-in call. Linear combinations of solutions to 
the Black-Scholes PDE are also solutions. 
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2. Learning Objectives: 
1. The candidate will understand the foundations of quantitative finance. 
 
Learning Outcomes: 
(1c) Understand Ito integral and stochastic differential equations. 
 
(1d) Understand and apply Ito’s Lemma. 
 
(1h) Define and apply the concepts of martingale, market price of risk and measures in 

single and multiple state variable contexts. 
 
Sources: 
Chin Chapter 2 
 
Commentary on Question: 
This question tests candidates’ understanding of the properties of Brownian motions, 
Ito's lemma, and martingales.   
 
Solution: 
 
(a) Evaluate the following expressions for 0 < 𝑠𝑠 < 𝑡𝑡 < 𝑢𝑢:  

 
(i) 𝐸𝐸ℚ(𝑊𝑊(𝑠𝑠) 𝑊𝑊(𝑡𝑡)𝑊𝑊(𝑢𝑢)) 

 
(ii) 𝐸𝐸ℚ(𝑊𝑊(𝑡𝑡)𝑊𝑊(𝑢𝑢) | ℱ𝑠𝑠) 

 
Commentary on Question: 
Many candidates did well on this part by applying the independence properties of 
increments of Brownian motions. 
 

This question is straight bookwork from Neftci and Chin. For both of these parts, use 
independent increments to simplify the expressions. 
 
Part (i) 
 
𝐸𝐸ℚ(𝑊𝑊(𝑡𝑡) × 𝑊𝑊(𝑢𝑢) × 𝑊𝑊(𝑠𝑠)) 
= 𝐸𝐸ℚ�(𝑊𝑊(𝑢𝑢) + 𝑊𝑊(𝑡𝑡) −𝑊𝑊(𝑡𝑡)) × 𝑊𝑊(𝑡𝑡) × 𝑊𝑊(𝑠𝑠)� 
= 𝐸𝐸ℚ�(𝑊𝑊(𝑢𝑢) −𝑊𝑊(𝑡𝑡)) × 𝑊𝑊(𝑡𝑡) × 𝑊𝑊(𝑠𝑠)� + 𝐸𝐸ℚ(𝑊𝑊2(𝑡𝑡) × 𝑊𝑊(𝑠𝑠)) = 𝑨𝑨 + 𝑩𝑩  
 
Since �𝑊𝑊(𝑢𝑢) −𝑊𝑊(𝑡𝑡)� is independent of 𝑊𝑊(𝑡𝑡) and 𝑊𝑊(𝑠𝑠) we may go with 
𝑨𝑨 = 𝐸𝐸ℚ ��𝑊𝑊(𝑢𝑢) −𝑊𝑊(𝑡𝑡)� × 𝑊𝑊(𝑡𝑡) × 𝑊𝑊(𝑠𝑠)� 

= 𝐸𝐸ℚ�𝑊𝑊(𝑢𝑢) −𝑊𝑊(𝑡𝑡)�𝐸𝐸ℚ�𝑊𝑊(𝑡𝑡) × 𝑊𝑊(𝑠𝑠)� = 0
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2. Continued 
 
𝑩𝑩 = 𝐸𝐸ℚ(𝑊𝑊2(𝑡𝑡) × 𝑊𝑊(𝑠𝑠)) 
 
= 𝐸𝐸ℚ((𝑊𝑊(𝑡𝑡) −𝑊𝑊(𝑠𝑠) + 𝑊𝑊(𝑠𝑠))2 × 𝑊𝑊(𝑠𝑠)) 
= 𝐸𝐸ℚ((𝑊𝑊(𝑡𝑡) −𝑊𝑊(𝑠𝑠))2 × 𝑊𝑊(𝑠𝑠)) + 2𝐸𝐸ℚ�(𝑊𝑊(𝑡𝑡) −𝑊𝑊(𝑠𝑠)) × 𝑊𝑊2(𝑠𝑠)� + 𝐸𝐸ℚ(𝑊𝑊3(𝑠𝑠)) 
= 𝐸𝐸ℚ((𝑊𝑊(𝑡𝑡) −𝑊𝑊(𝑠𝑠))2) × 𝐸𝐸ℚ(𝑊𝑊(𝑠𝑠)) + 2𝐸𝐸ℚ(𝑊𝑊(𝑡𝑡) −𝑊𝑊(𝑠𝑠)) × 𝐸𝐸ℚ(𝑊𝑊2(𝑠𝑠))

+ 𝐸𝐸ℚ(𝑊𝑊3(𝑠𝑠)) 
= (𝑡𝑡 − 𝑠𝑠) × 0 + 0 × 𝑠𝑠 + 0 
 
Hence 𝐸𝐸ℚ(𝑊𝑊(𝑡𝑡) × 𝑊𝑊(𝑢𝑢) × 𝑊𝑊(𝑠𝑠)) = 0 
 
Part (ii) 
 
Use the expressions obtained in part (ii) before the split of independent increments. For 
notation, denote 𝐸𝐸ℚ(𝑋𝑋|ℱ𝑠𝑠) = 𝐸𝐸𝑠𝑠

ℚ(𝑋𝑋) 
 
  
We may simply go with: 

𝐸𝐸𝑠𝑠
ℚ�𝑊𝑊(𝑡𝑡) × 𝑊𝑊(𝑢𝑢)� = 𝐸𝐸𝑠𝑠

ℚ�𝑊𝑊(𝑡𝑡) × 𝑊𝑊(𝑢𝑢)� 
= 𝐸𝐸𝑠𝑠

ℚ �𝑊𝑊(𝑡𝑡) × �𝑊𝑊(𝑢𝑢) −𝑊𝑊(𝑡𝑡) + 𝑊𝑊(𝑡𝑡)��  

= 𝐸𝐸𝑠𝑠
ℚ �𝑊𝑊(𝑡𝑡) × �𝑊𝑊(𝑢𝑢) −𝑊𝑊(𝑡𝑡)�� + 𝐸𝐸𝑠𝑠

ℚ�𝑊𝑊2(𝑡𝑡)� 

= 0 + 𝐸𝐸𝑠𝑠
ℚ ��𝑊𝑊(𝑡𝑡) −𝑊𝑊(𝑠𝑠)�

2
� + �𝑊𝑊(𝑠𝑠)�

2
where in the last equality we use the fact that 

𝐸𝐸𝑠𝑠
ℚ�𝑊𝑊(𝑡𝑡)� = 𝑊𝑊(𝑠𝑠) and 𝐸𝐸(𝑋𝑋2) = 𝐸𝐸[(𝑋𝑋 − 𝜇𝜇)2] + 𝜇𝜇2 

ence, 𝐸𝐸𝑠𝑠
ℚ�𝑊𝑊(𝑡𝑡) × 𝑊𝑊(𝑢𝑢)� = (𝑡𝑡 − 𝑠𝑠) + 𝑊𝑊2(𝑠𝑠) 

 
 
(b) Determine whether 𝑋𝑋(𝑡𝑡) is a martingale under ℚ using Ito’s lemma.   
 

Commentary on Question: 
Many candidates were able to derive the correct formula by applying Ito’s lemma 
and got the right answer.  
 

This question is an application of the multivariate Ito’s Lemma: 

𝑑𝑑𝑋𝑋(𝑡𝑡) = 𝑑𝑑 �(𝜕𝜕(𝑡𝑡))2 × 𝑊𝑊(𝑡𝑡) −�𝑊𝑊(𝑝𝑝)𝑑𝑑𝑝𝑝
𝜕𝜕

0

� 

Let 𝑨𝑨 ∗=  𝑑𝑑((𝜕𝜕(𝑡𝑡))2 × 𝑊𝑊(𝑡𝑡)) 
= 2𝜕𝜕(𝑡𝑡)𝑊𝑊(𝑡𝑡)𝑑𝑑𝜕𝜕(𝑡𝑡) + (𝜕𝜕(𝑡𝑡))2𝑑𝑑𝑊𝑊(𝑡𝑡) + .5 ∗ 2𝑊𝑊(𝑡𝑡)𝑑𝑑𝑡𝑡 
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2. Continued 
 
Let 𝑩𝑩 ∗= 𝑑𝑑 �−∫ 𝑊𝑊(𝑠𝑠)𝑑𝑑𝑠𝑠𝜕𝜕

0 � 
 
= −(𝑊𝑊(𝑡𝑡)𝑑𝑑𝑡𝑡) 
 
𝑨𝑨 ∗ +𝑩𝑩 ∗= 2𝜕𝜕(𝑡𝑡)𝑊𝑊(𝑡𝑡)𝑑𝑑𝜕𝜕(𝑡𝑡) + ((𝜕𝜕(𝑡𝑡))2)𝑑𝑑𝑊𝑊(𝑡𝑡) 
 
As V and W are independent and the SDE is driftless, X(t) is a martingale. 
 
(c) Determine whether 𝑋𝑋(𝑡𝑡) is a martingale under ℚ using the definition of a 

martingale.   
 

Commentary on Question: 
Most candidates did poorly in this part. Many candidates were able to list the 
three conditions of martingales. However, few were able to prove the second 
property. 

 
To obtain full marks, candidates need to show 𝑋𝑋(𝑡𝑡) satisfies the full definition of a 
martingale and all 3 parts. 
 
Criteria 1 – adaptability  
 
Clearly 𝑋𝑋(𝑡𝑡) is adapted to ℱ𝜕𝜕 
 
Criteria 2 – 𝐸𝐸ℚ(|𝑋𝑋(𝑡𝑡)|) < ∞ . Note, there is more than one way to demonstrate this.  

𝐸𝐸ℚ(|𝑋𝑋(𝑡𝑡)|) = 𝐸𝐸ℚ ��(𝜕𝜕(𝑡𝑡))2 × 𝑊𝑊(𝑡𝑡)−�𝑊𝑊(𝑝𝑝)𝑑𝑑𝑝𝑝
𝜕𝜕

0

�� 

By the triangle inequality, we have: 
 

≤ 𝐸𝐸ℚ(|(𝜕𝜕(𝑡𝑡))2 × 𝑊𝑊(𝑡𝑡)|) + 𝐸𝐸ℚ ���𝑊𝑊(𝑝𝑝)𝑑𝑑𝑝𝑝
𝜕𝜕

0

�� 

By independence of V and W, and abs(integral) ≤ integral(abs) 
 

≤ 𝐸𝐸ℚ(|(𝜕𝜕(𝑡𝑡))2|) × 𝐸𝐸ℚ(|𝑊𝑊(𝑡𝑡)|) + ��𝐸𝐸ℚ|𝑊𝑊(𝑝𝑝)|𝑑𝑑𝑝𝑝
𝜕𝜕

0

� 

Evaluate 𝐸𝐸ℚ(|𝑊𝑊(𝑡𝑡)|) = 2√𝑡𝑡 ∫ 𝑊𝑊(1) 1
√2𝜋𝜋

𝑒𝑒−
𝑊𝑊2(1)

2 𝑑𝑑𝑊𝑊(1)∞
0  

= −�
2𝑡𝑡
𝜋𝜋
�
𝜕𝜕𝑒𝑒−

𝑊𝑊2(1)
2

𝜕𝜕𝑊𝑊(1)
𝑑𝑑𝑊𝑊(1) = �2𝑡𝑡

𝜋𝜋

∞

0
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2. Continued 
 

So, 𝐸𝐸ℚ(|𝑋𝑋(𝑡𝑡)|) ≤ 𝑡𝑡�2𝜕𝜕
𝜋𝜋

+ ∫ �2𝑝𝑝
𝜋𝜋
𝑑𝑑𝑝𝑝𝜕𝜕

0 = 𝑡𝑡�2𝜕𝜕
𝜋𝜋

 +2
3
�2
𝜋𝜋

 𝑡𝑡3/2 = 5
3
�2
𝜋𝜋
𝑡𝑡3/2 < ∞ 

 
This is unnecessarily complicated.  

From 𝐸𝐸(𝑋𝑋2) = �𝐸𝐸(𝑋𝑋)�
2

+ 𝐸𝐸 ��𝑋𝑋 − 𝐸𝐸(𝑋𝑋)�
2
� we know 𝐸𝐸ℚ(|𝑊𝑊(𝑡𝑡)|) ≤ �𝐸𝐸ℚ�𝑊𝑊2(𝑡𝑡)� =

√𝑡𝑡. Thus 

𝐸𝐸ℚ ���𝜕𝜕(𝑡𝑡)�
2
�� × 𝐸𝐸ℚ(|𝑊𝑊(𝑡𝑡)|) + ��𝐸𝐸ℚ|𝑊𝑊(𝑝𝑝)|𝑑𝑑𝑝𝑝

𝜕𝜕

0

� 

≤ 𝑡𝑡 × √𝑡𝑡 + ���𝑝𝑝𝑑𝑑𝑝𝑝
𝜕𝜕

0

� = �1 +
2
3
� 𝑡𝑡

3
2 < ∞ 

 
Criteria 3 – martingale property 
 

𝐸𝐸𝑠𝑠
ℚ(𝑋𝑋(𝑡𝑡)) = 𝐸𝐸𝑠𝑠

ℚ �(𝜕𝜕(𝑡𝑡))2 × 𝑊𝑊(𝑡𝑡)−�𝑊𝑊(𝑝𝑝)𝑑𝑑𝑝𝑝
𝜕𝜕

0

� 

By the independence of V and W, and by splitting the integral we have 
 

= 𝐸𝐸𝑠𝑠
ℚ((𝜕𝜕(𝑡𝑡))2) × 𝐸𝐸𝑠𝑠

ℚ(𝑊𝑊(𝑡𝑡))− 𝐸𝐸𝑠𝑠
ℚ ��𝑊𝑊(𝑝𝑝)𝑑𝑑𝑝𝑝

𝑠𝑠

0

+ �𝑊𝑊(𝑝𝑝)𝑑𝑑𝑝𝑝
𝜕𝜕

𝑠𝑠

� 

Consider the first part of the equation. 𝑊𝑊(𝑡𝑡) is a Brownian motion and a martingale. i.e., 
𝐸𝐸𝑠𝑠
ℚ�𝑊𝑊(𝑡𝑡) −𝑊𝑊(𝑠𝑠) + 𝑊𝑊(𝑠𝑠)� = 𝑊𝑊(𝑠𝑠). 𝐸𝐸𝑠𝑠

ℚ ��𝜕𝜕(𝑡𝑡)�2� = 𝐸𝐸𝑠𝑠
ℚ ��𝜕𝜕(𝑡𝑡) − 𝜕𝜕(𝑠𝑠) + 𝜕𝜕(𝑠𝑠)�2� =

𝐸𝐸𝑠𝑠
ℚ((𝜕𝜕(𝑡𝑡) − 𝜕𝜕(𝑠𝑠))2) + 2𝐸𝐸𝑠𝑠

ℚ�𝜕𝜕(𝑠𝑠)(𝜕𝜕(𝑡𝑡)− 𝜕𝜕(𝑠𝑠))�+ 𝐸𝐸𝑠𝑠
ℚ ��𝜕𝜕(𝑠𝑠)�2� = 𝑡𝑡 − 𝑠𝑠 + �𝜕𝜕(𝑠𝑠)�2 

 
So, the first part of the equation is 𝑊𝑊(𝑠𝑠) �𝑡𝑡 − 𝑠𝑠 + �𝜕𝜕(𝑠𝑠)�2� 
 
Next, consider the second part of the equation and use the measurability of the first integral 
and indepence of the integrand on (s,t) of ℱ𝑠𝑠 
 

𝐸𝐸𝑠𝑠
ℚ ��𝑊𝑊(𝑝𝑝)𝑑𝑑𝑝𝑝

𝑠𝑠

0

+ �𝑊𝑊(𝑝𝑝)𝑑𝑑𝑝𝑝
𝜕𝜕

𝑠𝑠

� 

= ∫ 𝑊𝑊(𝑝𝑝)𝑑𝑑𝑝𝑝𝑠𝑠
0 + ∫ 𝐸𝐸𝑠𝑠ℚ�𝑊𝑊(𝑝𝑝) −𝑊𝑊(𝑠𝑠) + 𝑊𝑊(𝑠𝑠)�𝑑𝑑𝑝𝑝𝑡𝑡

𝑠𝑠   
  

= �𝑊𝑊(𝑝𝑝)𝑑𝑑𝑝𝑝

𝑠𝑠

0

+ 𝑊𝑊(𝑠𝑠)�𝑑𝑑𝑝𝑝

𝑡𝑡

𝑠𝑠

= �𝑊𝑊(𝑝𝑝)𝑑𝑑𝑝𝑝

𝑠𝑠

0

+ (𝑡𝑡 − 𝑠𝑠)𝑊𝑊(𝑠𝑠) 
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2. Continued 
 
Putting the two parts together, we have  

𝐸𝐸𝑠𝑠
ℚ(𝑋𝑋(𝑡𝑡)) =  𝑊𝑊(𝑠𝑠) �𝑡𝑡 − 𝑠𝑠 + �𝜕𝜕(𝑠𝑠)�2� − ��𝑊𝑊(𝑝𝑝)𝑑𝑑𝑝𝑝

𝑠𝑠

0

+ (𝑡𝑡 − 𝑠𝑠)𝑊𝑊(𝑠𝑠)� 

= 𝑊𝑊(𝑠𝑠)�𝜕𝜕(𝑠𝑠)�
2
−�𝑊𝑊(𝑝𝑝)𝑑𝑑𝑝𝑝

𝑠𝑠

0

= 𝑋𝑋(𝑠𝑠) 

 
Hence, 𝑋𝑋(𝑡𝑡) is a martingale  
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3. Learning Objectives: 
1. The candidate will understand the foundations of quantitative finance. 
 
Learning Outcomes: 
(1c) Understand Ito integral and stochastic differential equations. 
 
(1d) Understand and apply Ito’s Lemma. 
 
(1f) Understand and apply Jensen’s Inequality.  
 
(1i) Demonstrate understanding of the differences and implications of real-world 

versus risk-neutral probability measures, and when the use of each is appropriate.  
 
(1j) Understand and apply Girsanov’s theorem in changing measures. 
 
Solution: 
(a) Show that the solution to the stochastic differential equation above is:   

𝑆𝑆𝜕𝜕 = 𝑆𝑆0𝑒𝑒−𝜃𝜃𝜕𝜕 + 𝜇𝜇�1 − 𝑒𝑒−𝜃𝜃𝜕𝜕� + 𝜎𝜎� 𝑒𝑒−𝜃𝜃(𝜕𝜕−𝑜𝑜)𝑑𝑑𝑊𝑊𝑜𝑜.
𝜕𝜕

0
 

 
Commentary on Question: 
Candidates performed well on part(a). Most candidates were able to demonstrate 
that S_t as shown below satisfies the given SDE by way of Ito’s Lemma. 
 

Let 𝑋𝑋𝜕𝜕 = 𝑆𝑆𝜕𝜕𝑒𝑒𝜃𝜃𝜕𝜕. Ito Lemma gives: 
 

𝑑𝑑𝑋𝑋𝜕𝜕 = 𝑒𝑒𝜃𝜃𝜕𝜕𝑑𝑑𝑆𝑆𝜕𝜕 + 𝜃𝜃𝑆𝑆𝜕𝜕𝑒𝑒𝜃𝜃𝜕𝜕𝑑𝑑𝑡𝑡 =  𝑒𝑒𝜃𝜃𝜕𝜕[𝜇𝜇𝜃𝜃 𝑑𝑑𝑡𝑡 + 𝜎𝜎 𝑑𝑑𝑊𝑊𝜕𝜕] 
 
therefore 

𝑋𝑋𝜕𝜕 = 𝑋𝑋0 + 𝜇𝜇𝜃𝜃� 𝑒𝑒𝜃𝜃𝑜𝑜
𝜕𝜕

0
𝑑𝑑𝑢𝑢 + 𝜎𝜎� 𝑒𝑒𝜃𝜃𝑜𝑜

𝜕𝜕

0
𝑑𝑑𝑊𝑊𝑜𝑜 

and 

𝑆𝑆𝜕𝜕𝑒𝑒𝜃𝜃𝜕𝜕 = 𝑆𝑆0 + 𝜇𝜇(𝑒𝑒𝜃𝜃𝜕𝜕 − 1) + 𝜎𝜎� 𝑒𝑒𝜃𝜃𝑜𝑜
𝜕𝜕

0
𝑑𝑑𝑊𝑊𝑜𝑜 

 
from which we obtain the desired solution. 

 
(b) Derive  
 

(i) a lower bound for 𝐸𝐸ℙ[𝑆𝑆𝜕𝜕2] using Jensen’s inequality.   
 

(ii) the exact value of 𝐸𝐸ℙ[𝑆𝑆𝜕𝜕2] using Ito isometry.   



QFI QF Fall 2023 Solutions Page 12 
 

3. Continued 
 

Commentary on Question: 
Most candidates were able to recall Jensen’s inequality, and the majority of them 
successfully applied the inequality to derive the lower bound for the expectation. 
 

(i) 
Jensen’s theorem states that for 𝑓𝑓 convex: 

𝐸𝐸�𝑓𝑓(𝑋𝑋)� ≥ 𝑓𝑓�𝐸𝐸(𝑋𝑋)�. 
 
Let 𝑓𝑓(𝑥𝑥) = 𝑥𝑥2, convex. 
 
Then  

𝐸𝐸(𝑆𝑆𝜕𝜕2) ≥ [𝐸𝐸(𝑆𝑆𝜕𝜕)]2 = �𝑆𝑆0𝑒𝑒−𝜃𝜃𝜕𝜕 + 𝜇𝜇�1 − 𝑒𝑒−𝜃𝜃𝜕𝜕��
2

. 
 
 
(ii) 
First compute  

𝜕𝜕𝑉𝑉𝑟𝑟(𝑆𝑆𝜕𝜕) = 𝜎𝜎2𝑒𝑒−2𝜃𝜃𝜕𝜕𝜕𝜕𝑉𝑉𝑟𝑟 �� 𝑒𝑒𝜃𝜃𝑜𝑜
𝜕𝜕

0
𝑑𝑑𝑊𝑊𝑜𝑜� = 𝜎𝜎2𝑒𝑒−2𝜃𝜃𝜕𝜕𝐸𝐸 �� 𝑒𝑒𝜃𝜃𝑜𝑜

𝜕𝜕

0
𝑑𝑑𝑊𝑊𝑜𝑜�

2

= 𝜎𝜎2𝑒𝑒−2𝜃𝜃𝜕𝜕 �� 𝐸𝐸(𝑒𝑒2𝜃𝜃𝑜𝑜)
𝜕𝜕

0
𝑑𝑑𝑢𝑢� 

 
by Ito isometry.  
 
Evaluate the Riemann integral to obtain 

𝜕𝜕𝑉𝑉𝑟𝑟(𝑆𝑆𝜕𝜕) = 𝜎𝜎2𝑒𝑒−2𝜃𝜃𝜕𝜕
𝑒𝑒2𝜃𝜃𝜕𝜕 − 1

2𝜃𝜃
=
𝜎𝜎2

2𝜃𝜃
�1 − 𝑒𝑒−2𝜃𝜃𝜕𝜕�. 

Therefore: 

𝐸𝐸(𝑆𝑆𝜕𝜕2) =  𝜕𝜕𝑉𝑉𝑟𝑟(𝑆𝑆𝜕𝜕) + [𝐸𝐸(𝑆𝑆𝜕𝜕)]2 =
𝜎𝜎2

2𝜃𝜃
�1 − 𝑒𝑒−2𝜃𝜃𝜕𝜕� + �𝑆𝑆0𝑒𝑒−𝜃𝜃𝜕𝜕 + 𝜇𝜇�1 − 𝑒𝑒−𝜃𝜃𝜕𝜕��

2
. 

(c) Determine the Radon-Nikodym derivative 𝑑𝑑ℚ
𝑑𝑑ℙ

 that validates your colleague’s 
claim.   

 
Commentary on Question: 
Few candidates earned full credit in this part. While many could recall 
Girsanov’s Theorem and the definition of the Radon-Nikodym derivative, quite a 
few candidates were not able to apply both correctly to validate the colleague’s 
claim. 
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3. Continued 
 
Let 𝜆𝜆𝜕𝜕 = (𝑟𝑟+𝜃𝜃)𝜕𝜕𝑡𝑡−𝜇𝜇𝜃𝜃

𝜎𝜎
; then define the measure ℚ by means of its RN derivative with 

respect to ℙ: 
 

𝑑𝑑ℚ
𝑑𝑑ℙ

= 𝑒𝑒∫ 𝜆𝜆𝑢𝑢𝑑𝑑𝑊𝑊𝑢𝑢−0.5∫ 𝜆𝜆𝑢𝑢2𝑑𝑑𝑜𝑜
𝑡𝑡
0

𝑡𝑡
0  

 
Girsanov’s Theorem states that 𝑊𝑊𝜕𝜕

ℚ, defined by 
 

𝑊𝑊𝜕𝜕
ℚ = 𝑊𝑊𝜕𝜕 −� 𝜆𝜆𝑜𝑜 𝑑𝑑𝑢𝑢

𝜕𝜕

0
 

 
is a ℚ-standard Wiener process with respect to the same filtration. This can be written as 
 

𝑑𝑑𝑊𝑊𝜕𝜕
ℚ = 𝑑𝑑𝑊𝑊𝜕𝜕 − 𝜆𝜆𝜕𝜕 𝑑𝑑𝑡𝑡 

 
and substituted into the SDE of 𝑆𝑆𝜕𝜕 to obtain 
 
𝑑𝑑𝑆𝑆𝜕𝜕 = 𝜃𝜃(𝜇𝜇 −  𝑆𝑆𝜕𝜕) 𝑑𝑑𝑡𝑡 + 𝜎𝜎�𝑑𝑑𝑊𝑊𝜕𝜕

ℚ + 𝜆𝜆𝜕𝜕 𝑑𝑑𝑡𝑡�
=  𝜃𝜃(𝜇𝜇 −  𝑆𝑆𝜕𝜕) 𝑑𝑑𝑡𝑡 + (𝑟𝑟 + 𝜃𝜃)𝑆𝑆𝜕𝜕 𝑑𝑑𝑡𝑡 − 𝜇𝜇𝜃𝜃 𝑑𝑑𝑡𝑡 + 𝜎𝜎𝑑𝑑𝑊𝑊𝜕𝜕

ℚ = 𝑟𝑟𝑆𝑆𝜕𝜕 𝑑𝑑𝑡𝑡 + 𝜎𝜎 𝑑𝑑𝑊𝑊𝜕𝜕
ℚ  

 
therefore 

𝑑𝑑(𝑆𝑆𝜕𝜕𝑒𝑒−𝑟𝑟𝜕𝜕) =  𝑒𝑒−𝑟𝑟𝜕𝜕𝑑𝑑𝑆𝑆𝜕𝜕 − 𝑟𝑟𝑒𝑒−𝑟𝑟𝜕𝜕𝑆𝑆𝜕𝜕 𝑑𝑑𝑡𝑡 =  𝜎𝜎𝑒𝑒−𝑟𝑟𝜕𝜕 𝑑𝑑𝑊𝑊𝜕𝜕
ℚ, 

 
confirming the colleague’s claim. 
 
(d) Compute the fair value of this option using risk-neutral valuation.   
 

Commentary on Question: 
Candidates performed poorly in this part. While many were able to identify the 
fair value of the option as the present value of the expected payoff under a risk-
neutral measure, only a few were able to provide a complete solution. 

 
Let 𝜕𝜕0 be the option price at time 𝑡𝑡 = 0.  
 
Then: 

𝜕𝜕0 = 𝑒𝑒−𝑟𝑟𝐸𝐸ℚ�𝕀𝕀𝜕𝜕1>𝐾𝐾� = 𝑒𝑒−𝑟𝑟 ℚ(𝑆𝑆1 > 𝐾𝐾). 
 
Use part (a) with obvious substitutions to obtain 

𝑆𝑆1 = 𝑆𝑆0𝑒𝑒𝑟𝑟 + 𝜎𝜎� 𝑒𝑒−𝑟𝑟(1−𝑜𝑜)
1

0
𝑑𝑑𝑊𝑊𝑜𝑜

ℚ
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3. Continued 
 

and observe that it is normally distributed, with 
 

𝐸𝐸ℚ(𝑆𝑆1) = 𝑆𝑆0𝑒𝑒𝑟𝑟 

𝜕𝜕𝑉𝑉𝑟𝑟ℚ(𝑆𝑆1) =
𝜎𝜎2

2𝑟𝑟
(𝑒𝑒2𝑟𝑟 − 1) 

obtained from part (c), therefore 
 

𝑒𝑒−𝑟𝑟 ℚ(𝑆𝑆1 > 𝐾𝐾) = 𝑒𝑒−𝑟𝑟  

⎣
⎢
⎢
⎡
1 − N

⎝

⎛ 𝐾𝐾 − 𝑆𝑆0𝑒𝑒𝑟𝑟

�𝜎𝜎
2

2𝑟𝑟 (𝑒𝑒2𝑟𝑟 − 1)⎠

⎞

⎦
⎥
⎥
⎤

= 𝑒𝑒−𝑟𝑟 N

⎝

⎛ 𝑆𝑆0𝑒𝑒𝑟𝑟 − 𝐾𝐾

�𝜎𝜎
2

2𝑟𝑟 (𝑒𝑒2𝑟𝑟 − 1)⎠

⎞. 
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4. Learning Objectives: 
2. The candidate will understand: 

• The Quantitative tools and techniques for modeling the term structure of 
interest rates. 

• The standard yield curve models. 
• The tools and techniques for managing interest rate risk. 

 
Learning Outcomes: 
(2b) Understand and apply various one-factor interest rate models. 
 
(2c) Calibrate a model to observed prices of traded securities. 
 
(2f) Apply the models to price common interest sensitive instruments including: 

callable bonds, bond options, caps, floors, and swaptions. 
 
Sources: 
1) Fixed Income Securities: Valuation, Risk, and Risk Management, Veronesi, Pietro, 
2010 (Ch. 19) 
 
2) An Introduction to the Mathematics of Financial Derivatives, Hirsa, Ali and Neftci, 
Salih N., 3rd Edition 2nd Printing, 2014 (Ch. 3) 
 
Commentary on Question: 
This question tests candidates’ understanding of Hull-White model and applies the model 
to price call option.  Most candidates were able to earn partial credits for this question.  
 
Solution: 
(a) Demonstrate that 𝜃𝜃𝜕𝜕 = 𝑚𝑚 + 𝛾𝛾∗𝑐𝑐 + 𝛾𝛾∗𝑚𝑚𝑡𝑡 + 𝜎𝜎2

2𝛾𝛾∗
(1 − e−2𝛾𝛾∗𝜕𝜕)  

 
Commentary on Question: 
Candidates performed well in this part.  Candidates generally were able to 
derive 𝜃𝜃𝜕𝜕 and received full credit. 

 

𝜃𝜃𝜕𝜕 =
𝜕𝜕𝑓𝑓(0, 𝑡𝑡)
𝜕𝜕𝑡𝑡

+ 𝛾𝛾∗𝑓𝑓(0, 𝑡𝑡) +
𝜎𝜎2

2𝛾𝛾∗
(1 − 𝑒𝑒−2𝛾𝛾∗𝜕𝜕) 

 
𝑓𝑓(0, 𝑡𝑡) = 𝑐𝑐 + 𝑚𝑚𝑡𝑡, 𝜕𝜕𝜕𝜕(0,𝜕𝜕)

𝜕𝜕𝜕𝜕
 = m 

  
Hence, 
 
𝜃𝜃𝜕𝜕 = 𝑚𝑚 + 𝛾𝛾∗𝑐𝑐 + 𝛾𝛾∗𝑚𝑚𝑡𝑡 + 𝜎𝜎2

2𝛾𝛾∗
(1 − 𝑒𝑒−2𝛾𝛾∗𝜕𝜕) 
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4. Continued 
 
(b) Show that:  
 

(i) 𝐴𝐴(0;𝑇𝑇) = 𝑐𝑐
𝛾𝛾∗

(1 − e−𝛾𝛾∗𝑇𝑇) − 𝑐𝑐𝑇𝑇 − 𝑚𝑚𝑇𝑇2

2
 

 

(ii) 𝑍𝑍(𝑟𝑟0, 0;𝑇𝑇) = 𝑒𝑒
−𝑚𝑚𝑇𝑇2

2 −𝑟𝑟𝑜𝑜𝑇𝑇 
 

Commentary on Question: 
Candidates performed below average for part (i).  Most candidates who took 
solution 1 or solution 2 approach were able to derive A(0,T) successfully.  
Candidates who took solution 3 approach were mostly stopped at the first step. 
 
Candidates performed as expected for part (ii). Candidates who failed to mention 
𝑟𝑟0 = 𝑐𝑐 received partial credit.    
 

(i) 
Solution 1: 

𝑓𝑓(𝑡𝑡,𝑇𝑇) =  −
𝜕𝜕
𝜕𝜕𝑇𝑇

(ln𝑍𝑍(𝑟𝑟, 𝑡𝑡;𝑇𝑇)) 
 
𝑓𝑓(0,𝑇𝑇) =  − 𝜕𝜕

𝜕𝜕𝑇𝑇
(𝑙𝑙𝑙𝑙𝑍𝑍(𝑟𝑟0, 0;𝑇𝑇))  

 
Therefore, 
𝑍𝑍(𝑟𝑟0, 0;𝑇𝑇) = 𝑒𝑒−∫ 𝜕𝜕(0,𝜕𝜕)𝑑𝑑𝜕𝜕𝑇𝑇

0  = 𝑒𝑒−∫ (𝑐𝑐+𝑚𝑚𝜕𝜕)𝑑𝑑𝜕𝜕𝑇𝑇
0  = 𝑒𝑒−(𝑐𝑐𝑇𝑇+12𝑚𝑚𝑇𝑇

2) = 𝑒𝑒𝐴𝐴(0;𝑇𝑇)−𝐵𝐵(0;𝑇𝑇)𝑟𝑟0 
 

=>  −�𝑐𝑐𝑇𝑇 +
1
2
𝑚𝑚𝑇𝑇2� = 𝐴𝐴(0;𝑇𝑇) − 𝐵𝐵(0;𝑇𝑇)𝑟𝑟0 

 
And 𝑟𝑟0 = 𝑓𝑓(0,0) = 𝑐𝑐 + 𝑚𝑚 ∗ 0 = 𝑐𝑐 
 
𝐴𝐴(0;𝑇𝑇) = 𝐵𝐵(0;𝑇𝑇)𝑟𝑟0 − �𝑐𝑐𝑇𝑇 + 1

2
𝑚𝑚𝑇𝑇2�  =  𝜕𝜕

𝛾𝛾∗
 (1 − 𝑒𝑒−𝛾𝛾∗𝑇𝑇) − 𝑐𝑐𝑇𝑇 − 1

2
𝑚𝑚𝑇𝑇2 

 
Solution 2:  
 
𝑓𝑓(𝑡𝑡,𝑇𝑇) =  − 𝜕𝜕

𝜕𝜕𝑇𝑇
(ln𝑍𝑍(𝑟𝑟, 𝑡𝑡;𝑇𝑇))     

 

𝑓𝑓(0,𝑇𝑇) = 𝑐𝑐 + 𝑚𝑚𝑇𝑇 = −
𝜕𝜕
𝜕𝜕𝑇𝑇

ln𝑍𝑍(𝑟𝑟0, 0;𝑇𝑇) = =  −
𝜕𝜕
𝜕𝜕𝑇𝑇

�𝐴𝐴(0;𝑇𝑇) − 𝑟𝑟0𝐵𝐵(0;𝑇𝑇)� 
 

But 𝐵𝐵(0;𝑇𝑇) = 1−𝑒𝑒−𝛾𝛾
∗𝑇𝑇

𝛾𝛾∗ 
⇒ 𝜕𝜕

 𝜕𝜕𝑇𝑇 
𝐵𝐵(0;𝑇𝑇) = 𝑒𝑒−𝛾𝛾∗𝑇𝑇 
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4. Continued 
 
Therefore, 𝜕𝜕

 𝜕𝜕𝑇𝑇 
𝐴𝐴(0;𝑇𝑇) = 𝜕𝜕

𝜕𝜕𝑇𝑇
𝑟𝑟0𝐵𝐵(0;𝑇𝑇) − 𝑐𝑐 −𝑚𝑚𝑇𝑇 = 𝑟𝑟0𝑒𝑒−𝛾𝛾

∗𝑇𝑇 − 𝑐𝑐 − 𝑚𝑚𝑇𝑇 
 
By integrating, 

𝐴𝐴(0;𝑇𝑇) − 𝐴𝐴(0; 0) = 𝑟𝑟0 ∗
1−𝑒𝑒−𝛾𝛾

∗𝑇𝑇

𝛾𝛾∗
− 𝑐𝑐𝑇𝑇 −  1

2
𝑚𝑚𝑇𝑇2 

 
And  𝐴𝐴(0; 0) = 0, (this implies from the fact that 𝑍𝑍(𝑟𝑟, 0; 0) = 1) 
 
         𝑟𝑟0 = 𝑓𝑓(0,0) = 𝑐𝑐 + 𝑚𝑚 ∗ 0 = 𝑐𝑐 
 
Therefore, 𝐴𝐴(0;𝑇𝑇) = 𝑐𝑐

𝛾𝛾∗
(1 − e−𝛾𝛾∗𝑇𝑇) − 𝑐𝑐𝑇𝑇 − 𝑚𝑚𝑇𝑇2

2
 

 
Solution 3:  
 

𝐴𝐴(0;𝑇𝑇) = � −𝜃𝜃𝜕𝜕𝐵𝐵(0;𝑇𝑇 − 𝑡𝑡)𝑑𝑑𝑡𝑡 +
𝜎𝜎2

2(𝛾𝛾∗)2
[𝑇𝑇 +

.

𝑇𝑇

0
 
1 − 𝑒𝑒−2𝛾𝛾∗(𝑇𝑇)

2𝛾𝛾∗
 

= � [−𝑚𝑚− 𝛾𝛾∗𝑐𝑐 − 𝛾𝛾∗𝑚𝑚𝑡𝑡 −
𝜎𝜎2

2𝛾𝛾∗
(1 − 𝑒𝑒−2𝛾𝛾∗𝜕𝜕)]

�1 − 𝑒𝑒−𝛾𝛾∗(𝑇𝑇−𝜕𝜕)�
𝛾𝛾∗

𝑑𝑑𝑡𝑡
.

𝑇𝑇

0
 

+
𝜎𝜎2

2(𝛾𝛾∗)2 [𝑇𝑇 +
1 − 𝑒𝑒−2𝛾𝛾∗(𝑇𝑇)

2𝛾𝛾∗
− 2𝐵𝐵(0;𝑇𝑇)] 

 

= −
𝑚𝑚𝑇𝑇
𝛾𝛾∗

− 𝑐𝑐𝑇𝑇 −
𝑚𝑚𝑇𝑇2

2
−�

𝜎𝜎2

2𝛾𝛾∗2
(1 − 𝑒𝑒−2𝛾𝛾∗(𝜕𝜕)

𝑇𝑇

0
)𝑑𝑑𝑡𝑡   

+
𝑚𝑚
𝛾𝛾∗

 �
(𝑒𝑒−𝛾𝛾∗(𝑇𝑇−𝜕𝜕)

1
𝑑𝑑𝑡𝑡

𝑇𝑇

0
+ 𝑐𝑐 � 𝑒𝑒−𝛾𝛾∗(𝑇𝑇−𝜕𝜕)

𝑇𝑇

0
𝑑𝑑𝑡𝑡 + 𝑚𝑚� 𝑡𝑡

𝑇𝑇

0
𝑒𝑒−𝛾𝛾∗(𝑇𝑇−𝜕𝜕)𝑑𝑑𝑡𝑡 

 

+�
𝜎𝜎2

2𝛾𝛾∗2
𝑇𝑇

0
�𝑒𝑒−𝛾𝛾∗(𝑇𝑇−𝜕𝜕) − 𝑒𝑒−𝛾𝛾∗(𝑇𝑇+𝜕𝜕)�𝑑𝑑𝑡𝑡 

+
𝜎𝜎2

2(𝛾𝛾∗)2 [𝑇𝑇 +
1 − 𝑒𝑒−2𝛾𝛾∗(𝑇𝑇)

2𝛾𝛾∗
− 2𝐵𝐵(0;𝑇𝑇)] 

 

= −
𝑚𝑚𝑇𝑇
𝛾𝛾∗

− 𝑐𝑐𝑇𝑇 −
𝑚𝑚𝑇𝑇2

2
−

𝜎𝜎2

2𝛾𝛾∗2
𝑇𝑇 −

𝜎𝜎2

4𝛾𝛾∗3
𝑒𝑒−2𝛾𝛾∗𝑇𝑇 +

𝜎𝜎2

4𝛾𝛾∗3
 

 

+𝑚𝑚
�1 − 𝑒𝑒−𝛾𝛾∗(𝑇𝑇)�

𝛾𝛾∗1
+ 𝑐𝑐

�1 − 𝑒𝑒−𝛾𝛾∗(𝑇𝑇)�
𝛾𝛾∗

+ 𝑚𝑚
(𝑡𝑡𝑒𝑒−𝛾𝛾∗(𝑇𝑇−𝜕𝜕)

𝛾𝛾∗
|0𝑇𝑇 −

𝑚𝑚
𝛾𝛾∗
� 𝑒𝑒−𝛾𝛾∗(𝑇𝑇−𝜕𝜕)
𝑇𝑇

0
𝑑𝑑𝑡𝑡 

 

+
𝜎𝜎2

2𝛾𝛾∗3
�1 − 𝑒𝑒−𝛾𝛾∗𝑇𝑇�+

𝜎𝜎2

2𝛾𝛾∗3
𝑒𝑒−𝛾𝛾∗(2𝑇𝑇) −

𝜎𝜎2

2𝛾𝛾∗3
𝑒𝑒−𝛾𝛾∗(𝑇𝑇) 
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4. Continued 
 

+
𝜎𝜎2

2(𝛾𝛾∗)2 [𝑇𝑇 +
1 − 𝑒𝑒−2𝛾𝛾∗(𝑇𝑇)

2𝛾𝛾∗
− 2

1 − 𝑒𝑒−𝛾𝛾∗(𝑇𝑇)

𝛾𝛾∗
] 

 

= −
𝑚𝑚𝑇𝑇
𝛾𝛾∗

− 𝑐𝑐𝑇𝑇 −
𝑚𝑚𝑇𝑇2

2
−

𝜎𝜎2

2𝛾𝛾∗2
𝑇𝑇 −

𝜎𝜎2

4𝛾𝛾∗3
𝑒𝑒−2𝛾𝛾∗𝑇𝑇 +

𝜎𝜎2

4𝛾𝛾∗3
 

 

 𝑚𝑚
(1 − 𝑒𝑒−𝛾𝛾∗(𝑇𝑇))

𝛾𝛾∗2
+ 𝑐𝑐

(1 − 𝑒𝑒−𝛾𝛾∗(𝑇𝑇))
𝛾𝛾∗

+ 𝑚𝑚
�𝑡𝑡𝑒𝑒−𝛾𝛾∗(𝑇𝑇−𝜕𝜕)�

𝛾𝛾∗
|0𝑇𝑇 −  𝑚𝑚

�1 − 𝑒𝑒−𝛾𝛾∗(𝑇𝑇)�
𝛾𝛾∗2

+
𝜎𝜎2

2𝛾𝛾∗3
(1 − 𝑒𝑒−𝛾𝛾∗𝑇𝑇) 

 

+
𝜎𝜎2

2𝛾𝛾∗3
𝑒𝑒−𝛾𝛾∗(2𝑇𝑇) −

𝜎𝜎2

2𝛾𝛾∗3
𝑒𝑒−𝛾𝛾∗(𝑇𝑇) +

𝜎𝜎2

2(𝛾𝛾∗)2 [𝑇𝑇 +
1 − 𝑒𝑒−2𝛾𝛾∗(𝑇𝑇)

2𝛾𝛾∗
− 2

1 − 𝑒𝑒−𝛾𝛾∗(𝑇𝑇)

𝛾𝛾∗
] 

 

=
𝑐𝑐
𝛾𝛾∗

(1 − 𝑒𝑒−𝛾𝛾∗𝑇𝑇) − 𝑐𝑐𝑇𝑇 −
𝑚𝑚𝑇𝑇2

2
 

 
(ii) 
 
𝑍𝑍(𝑟𝑟0, 𝑡𝑡;𝑇𝑇) = 𝑒𝑒𝐴𝐴(𝜕𝜕;𝑇𝑇)−𝐵𝐵(𝜕𝜕;𝑇𝑇)𝑟𝑟0 
 
Since 𝑟𝑟0 = 𝑓𝑓(0,0) = 𝑐𝑐 + 𝑚𝑚 ∗ 0 = 𝑐𝑐 
 

𝑍𝑍(𝑟𝑟0, 0;𝑇𝑇) = 𝑒𝑒
−𝑐𝑐𝑇𝑇−𝑚𝑚𝑇𝑇2

2 + 𝑐𝑐
𝛾𝛾∗(1−𝑒𝑒−𝛾𝛾∗𝑇𝑇)−�1−𝑒𝑒−𝛾𝛾∗(𝑇𝑇)

𝛾𝛾∗ �𝑟𝑟0
= 𝑒𝑒

−𝑟𝑟0𝑇𝑇−
𝑚𝑚𝑇𝑇2
2 +𝑟𝑟𝑜𝑜𝛾𝛾∗(1−𝑒𝑒−𝛾𝛾∗𝑇𝑇)−�1−𝑒𝑒−𝛾𝛾∗(𝑇𝑇)

𝛾𝛾∗ �𝑟𝑟0
 

 

𝑍𝑍(𝑟𝑟0, 0;𝑇𝑇) = 𝑒𝑒−
𝑚𝑚𝑇𝑇2

2 −𝑟𝑟𝑜𝑜𝑇𝑇 
 
 
(c) Calculate 𝛾𝛾∗.   
 

Commentary on Question: 
 
Most Candidates were able to answer the question correctly.  For those who did 
not receive full marks was mostly due to calculation error. 

 

𝜃𝜃𝜕𝜕 = 𝑚𝑚 + 𝛾𝛾∗𝑐𝑐 + 𝛾𝛾∗𝑚𝑚𝑡𝑡 +
𝜎𝜎2

2𝛾𝛾∗
(1 − 𝑒𝑒−2𝛾𝛾∗𝜕𝜕) 

 
𝜃𝜃
� 1
2𝛾𝛾∗�

− 𝜃𝜃0 

 

= 𝛾𝛾∗𝑚𝑚( 1
2𝛾𝛾∗) + 𝜎𝜎2

2𝛾𝛾∗
(1 − 𝑒𝑒−2𝛾𝛾

∗ 1
2𝛾𝛾∗) = 𝑚𝑚

2
+ 𝜎𝜎2

2𝛾𝛾∗
(1 − 𝑒𝑒−1)= 0.0862

2
+ 0.22

2𝛾𝛾∗
(1 − 𝑒𝑒−1) = 0.084 

 
=>  𝛾𝛾∗ = 0.309105 
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4. Continued 
 
(d) Calculate the price at t=0 of the1 year and 2 months European call with strike 

price of $90, written on zero-coupon bond with face value $100 and maturity of 
2.5 years.   

 
Commentary on Question: 
Candidates performed below average in this part.  Most candidates were able to 
show the formulas to calculate the call option but failed to modify the formulas 
for face amount $100.  Some candidates did not have the correct formula for 
volatility.     

 
Principal=100, K=90 
𝐵𝐵(7/6;  2.5) = 1

0.309105
�1 − 𝑒𝑒−0.309105(2.5−7/6)� = 1.09273  

𝑆𝑆𝑍𝑍 (𝑇𝑇𝑑𝑑;𝑇𝑇1) = 𝐵𝐵(𝑇𝑇𝑑𝑑;𝑇𝑇𝐵𝐵) ∗ �
𝜎𝜎2

2𝛾𝛾
(1 − 𝑒𝑒−2𝛾𝛾𝑇𝑇𝑂𝑂)  

𝑆𝑆𝑍𝑍 (7/6; 2.5) = 𝐵𝐵(7/6; 2.5) ∗ �
0.22

2 ∗ 0.309105
(1 − 𝑒𝑒−2∗0.309105∗7/6) 

𝑆𝑆𝑍𝑍 (7/6; 2.5) = 0.199248  
 

𝑍𝑍(0, 𝑟𝑟0; 7/6) = 𝑒𝑒
−0.0862�76�

2

2  −0.04∗76=0.900027  
= 

𝑍𝑍(0, 𝑟𝑟0; 2.5) = 𝑒𝑒
−0.0862(2.5)2

2  −0.04∗2.5=0.691166. 
 

𝑑𝑑1 =
1

𝑆𝑆𝑍𝑍 (𝑇𝑇𝑑𝑑;𝑇𝑇𝐵𝐵) 
𝑙𝑙𝑙𝑙(𝑍𝑍(0, 𝑟𝑟0;𝑇𝑇𝐵𝐵)/(𝐾𝐾𝑣𝑣𝑍𝑍(0, 𝑟𝑟0;𝑇𝑇𝑑𝑑) ) +

𝑆𝑆𝑍𝑍 (𝑇𝑇𝑑𝑑;𝑇𝑇𝐵𝐵)
2

 

𝑑𝑑1 =
1

0.199248 
𝑙𝑙𝑙𝑙 �

100 ∗ 0.691166
90 ∗ 0.900027

� +
0.199248

2
 

= −0.69679 
 
𝑑𝑑2 = 𝑑𝑑1 − 𝑆𝑆𝑍𝑍 (𝑇𝑇𝑑𝑑;𝑇𝑇𝐵𝐵) =-0.89604 
 
𝑁𝑁(𝑑𝑑1) =0.242967,   𝑁𝑁(𝑑𝑑2) =0.185116 
 
The price of the call option 
𝜕𝜕(𝑟𝑟0, 0) = 100 ∗ 𝑍𝑍(0, 𝑟𝑟0;𝑇𝑇𝐵𝐵)𝑁𝑁(𝑑𝑑1)− 90𝑍𝑍(0, 𝑟𝑟0;𝑇𝑇𝑂𝑂)𝑁𝑁(𝑑𝑑2) 
= 100 ∗ 0.691166 ∗ 𝑁𝑁(𝑑𝑑1) − 90 ∗ 0.900027 ∗ 𝑁𝑁(𝑑𝑑2) 
=1.798 
 
 



QFI QF Fall 2023 Solutions Page 20 
 

5. Learning Objectives: 
2. The candidate will understand: 

• The Quantitative tools and techniques for modeling the term structure of 
interest rates. 

• The standard yield curve models. 
• The tools and techniques for managing interest rate risk. 

 
Learning Outcomes: 
(2b) Understand and apply various one-factor interest rate models. 
 
(2c) Calibrate a model to observed prices of traded securities. 
 
Commentary on Question: 
This question tests candidates’ understanding of interest rate calibrations. Most of the 
candidates earned full or partial credits from part (a) and (b), but only a few candidates 
earned partial credits from part (c). 
 
Solution: 
(a) Calculate the probability of simulating a negative interest rate for the next trading 

day.   
 

Commentary on Question: 
Most of the candidates were able to use the correct formula for this question. 
Candidates earned partial credits if they used the correct formula but failed to 
calculate the final numbers. Full credit will be given to candidates who calculated 
the correct value.  
 

𝑃𝑃[𝑟𝑟𝜕𝜕+𝑠𝑠 < 0|𝑟𝑟𝜕𝜕] = Φ(− �̅�𝑟+(𝑟𝑟𝑡𝑡−�̅�𝑟)𝑒𝑒−𝛾𝛾𝛾𝛾

𝜎𝜎��1−𝑒𝑒
−2𝛾𝛾𝛾𝛾�
2𝛾𝛾

)  

Substituting values for paramteres 
  

𝑧𝑧 =
�̅�𝑟 + (𝑟𝑟𝜕𝜕 − �̅�𝑟)𝑒𝑒−𝛾𝛾𝑠𝑠

𝜎𝜎�(1 − 𝑒𝑒−2𝛾𝛾𝑠𝑠)
2𝛾𝛾

= 2.66113 

 
Then the probability is Φ(−2.66113) = 0.0039 
 
(b) Calculate the simulated rate for the next trading day using  
 

(i) the Euler-Maruyama discretization method.   
 
(ii) the transition density method.   
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5. Continued 
 

Commentary on Question: 
Some of candidates earned partial credits for using the correct formulas and 
parameters but only a few candidates calculated the correct values. 

 
(i) Under Euler-Maruyama discretization 

𝑟𝑟(𝑖𝑖) = 𝛼𝛼 + 𝛽𝛽𝑟𝑟(𝑖𝑖 − 1) + 𝜖𝜖𝑣𝑣, 𝑖𝑖 = 1,2, …  
Where 𝛼𝛼 = 𝛾𝛾�̅�𝑟Δ,𝛽𝛽 = 1 − 𝛾𝛾Δ and 𝜖𝜖𝑣𝑣 ∼ 𝑁𝑁(0,𝜎𝜎∗2) with 𝜎𝜎∗ = 𝜎𝜎√Δ  With given parameters 
 

𝛼𝛼 = 0.3 ∗ 0.05 ∗
1

252
= 5.952 ∗ 10−5  

𝛽𝛽 = 1 − 0.05 ∗
1

252
= 0.9980 

𝜎𝜎∗ = 0.06 ∗ �
1

252
= 0.0037796 

𝑟𝑟(𝑖𝑖 − 1) = 0.01 
𝑟𝑟(𝑖𝑖) = 5.952 ∗ 10−5 + 0.9980 ∗ 0.01 − 1.96 ∗ 0.0037796 

𝑟𝑟(𝑖𝑖) = 0.002631 
 

(ii) With the transition density method next random number from the Vasicek 
is given by 

𝑟𝑟𝜕𝜕+𝑠𝑠 = �̅�𝑟 + (𝑟𝑟𝜕𝜕 − �̅�𝑟)𝑒𝑒−𝛾𝛾𝑠𝑠 + �
𝜎𝜎2

2𝛾𝛾
(1 − 𝑒𝑒−2𝛾𝛾𝑠𝑠)�

1
2

𝑍𝑍  

With the given parameters  

(𝑟𝑟𝜕𝜕 − �̅�𝑟)𝑒𝑒−𝛾𝛾𝑠𝑠 = (0.01 − 0.05)𝑒𝑒−
0.3
252 = −0.03995241 

�
𝜎𝜎2

2𝛾𝛾
(1 − 𝑒𝑒−2𝛾𝛾𝑠𝑠)�

1
2

= 0.03777 

𝑟𝑟𝜕𝜕+𝑠𝑠 = 0.05 − 0.03995241 + 0.03777 ∗ (−1.96) 
𝑟𝑟𝜕𝜕+𝑠𝑠 = 0.002644 

 
(c) Compare and contrast the Euler-Maruyama discretization method and the 

transition density method for simulating interest rate paths in general and in this 
particular case for Vasicek model.   

 
Commentary on Question: 
Not many candidates attempted this question and some of them successfully 
identified Euler-Maruyama method is an approximating method and Transition 
density method is an exact method. However, few candidates pointed out that the 
differences between those two methods are minimal when s is small in the Vasicek 
model. 
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5. Continued 
 

The Euler-Maruyama method is based on the first order discretization of a stochastic 
differential equation (or simiple discretization) 
i.e. 

𝑑𝑑𝑟𝑟𝜕𝜕 = 𝑉𝑉(𝑟𝑟𝜕𝜕)𝑑𝑑𝑡𝑡 + 𝑏𝑏(𝑟𝑟𝜕𝜕)𝑑𝑑𝑋𝑋𝜕𝜕 
is approximated using 

𝑟𝑟𝜕𝜕+Δ − 𝑟𝑟𝜕𝜕 ≈ 𝑉𝑉(𝑟𝑟𝜕𝜕)Δ+ 𝑏𝑏(𝑟𝑟𝜕𝜕)√Δ𝑍𝑍 
Where Δ is a small time step and Z is a standard normal random variable with mean 0 and 
variance 1. 
Essentially in simulation we are assuming  𝑟𝑟𝜕𝜕+Δ|𝑟𝑟𝜕𝜕  is normally distributed with mean 
 𝑟𝑟𝜕𝜕 + 𝑉𝑉(𝑟𝑟𝜕𝜕)Δ and variance 𝑏𝑏(𝑟𝑟𝜕𝜕)2Δ. So even if  the original process doesn’t take negative 
values, the approximation may give negative values. 
 
Transition density method relies on the exact distribution of 𝑟𝑟𝜕𝜕+Δ|𝑟𝑟𝜕𝜕. So it is an exact 
method not an approximation. The disadvantage of this method is the exact distribution 
may not be available for many cases. 
 
In the Vasicek method as we saw in part (a) and (b) the difference is minimal. That is 
because the exact distribution of  𝑟𝑟𝜕𝜕+s|𝑟𝑟𝜕𝜕   is normal and since for small values of s  

𝑒𝑒−𝛾𝛾𝑠𝑠 ≈ 1 − 𝛾𝛾𝑠𝑠  
With that 

�̅�𝑟 + (𝑟𝑟𝜕𝜕 − �̅�𝑟)𝑒𝑒−𝛾𝛾𝑠𝑠 ≈  �̅�𝑟 + (𝑟𝑟𝜕𝜕 − �̅�𝑟)(1 − γs) 
�̅�𝑟 + (𝑟𝑟𝜕𝜕 − �̅�𝑟)𝑒𝑒−𝛾𝛾𝑠𝑠 ≈ �̅�𝑟𝛾𝛾𝑠𝑠 + 𝑟𝑟𝜕𝜕(1 − 𝛾𝛾𝑠𝑠) 

and  �𝜎𝜎
2

2𝛾𝛾
(1 − 𝑒𝑒−2𝛾𝛾𝑠𝑠)� ≈ 𝜎𝜎2𝑠𝑠. These are the mean and  variance in the Euler-Maruyama 

discretization method. 
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6. Learning Objectives: 
2. The candidate will understand: 

• The Quantitative tools and techniques for modeling the term structure of 
interest rates. 

• The standard yield curve models. 
• The tools and techniques for managing interest rate risk. 

 
Learning Outcomes: 
(2b) Understand and apply various one-factor interest rate models. 
 
(2c) Calibrate a model to observed prices of traded securities. 
 
(2d) Describe the practical issues related to calibration, including yield curve fitting. 
 
(2g) Understand and apply the techniques of interest rate risk hedging. 
 
Sources: 
Fixed Income Securities: Valuation, Risk, and Risk Management, Veronesi, Pietro, 2010, 
Chapter 15-16 
 
Commentary on Question: 
Commentary listed underneath question component. 
 
Solution: 
(a) Derive the expression for 𝑍𝑍𝜕𝜕 by solving the above ODEs.   

(Hint: The solutions of an ODE 𝑓𝑓′(𝑥𝑥) = 𝑓𝑓(𝑥𝑥)𝛾𝛾 − 1 are 𝑓𝑓(𝑥𝑥) = 1
𝛾𝛾
− 𝐶𝐶𝑒𝑒𝛾𝛾𝛾𝛾 where C 

is a constant.)   
 

Commentary on Question: 
This was a challenging part. About half of the candidates attempted to solve it 
and of those very few went beyond applying the hint to solve for B. Some 
candidates did not realize that one needs a boundary condition to find the 
constants. 
 
At time T Z(T,T) = 1, therefore  

𝐴𝐴(𝑇𝑇,𝑇𝑇) − 𝐵𝐵(𝑇𝑇,𝑇𝑇)𝑟𝑟𝑇𝑇 = 0 
And  

𝐴𝐴(𝑇𝑇,𝑇𝑇) = 0 
𝐵𝐵(𝑇𝑇,𝑇𝑇) = 0 

Since the exponent of Z must be 0 for any value of 𝑟𝑟𝑇𝑇. 
 
From the hint: 
𝐵𝐵(𝑡𝑡,𝑇𝑇) = 𝐶𝐶 −   1

𝛾𝛾
 𝑒𝑒−𝛾𝛾(𝜕𝜕−𝑇𝑇), from B(T,T) = 0 C =1

𝛾𝛾
, and therefore  

𝐵𝐵(𝑡𝑡,𝑇𝑇) =  
1
𝛾𝛾

 ( 1 −  𝑒𝑒−𝛾𝛾(𝜕𝜕−𝑇𝑇))
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6. Continued 
 
To solve for A, we integrate: 
𝑑𝑑𝐴𝐴(𝜕𝜕,𝑇𝑇)
𝑑𝑑𝜕𝜕

= 𝐵𝐵(𝑡𝑡,𝑇𝑇)𝛾𝛾�̅�𝑟 − 1
2
𝐵𝐵(𝑡𝑡,𝑇𝑇)2𝜎𝜎2 = �1 − 𝑒𝑒−𝛾𝛾(𝑇𝑇−𝜕𝜕)��̅�𝑟 − 𝜎𝜎2

2
�1−𝑒𝑒

−𝛾𝛾(𝑇𝑇−𝑡𝑡)

𝛾𝛾
�
2
 to get: 

𝐴𝐴(𝑡𝑡,𝑇𝑇) = �𝑡𝑡 − 1
𝛾𝛾
𝑒𝑒−𝛾𝛾(𝑇𝑇−𝜕𝜕) + 𝐶𝐶� �̅�𝑟 − 𝜎𝜎2

2𝛾𝛾2
�𝑡𝑡 − 2

𝛾𝛾
𝑒𝑒−𝛾𝛾(𝑇𝑇−𝜕𝜕) + 1

2𝛾𝛾
𝑒𝑒−2𝛾𝛾(𝑇𝑇−𝜕𝜕) + 𝐷𝐷�, where C and D 

are constants. From the boundary condition  
𝐴𝐴(𝑇𝑇,𝑇𝑇) = 0 

A(T,T) = (T - 1
𝛾𝛾 

+ 𝐶𝐶)�̅�𝑟 −  𝜎𝜎
2

2𝛾𝛾2
 �𝑇𝑇 −  2

𝛾𝛾 
+ 1

2𝛾𝛾
+ 𝐷𝐷� = 0, therefore C = 1

𝛾𝛾 
− 𝑇𝑇 𝑉𝑉𝑙𝑙𝑑𝑑 𝐷𝐷 =  3

2𝛾𝛾
− 𝑇𝑇 

Plugging into the formula for A and rearranging we get: 

𝐴𝐴(𝑡𝑡,𝑇𝑇) =  [𝐵𝐵(𝑡𝑡,𝑇𝑇) − (𝑇𝑇 − 𝑡𝑡)]��̅�𝑟 −
𝜎𝜎2

2𝛾𝛾2�
−
𝜎𝜎2

4𝛾𝛾
𝐵𝐵(𝑡𝑡,𝑇𝑇)2 

 
(b) Choose the best parametrization 𝛾𝛾 and �̅�𝑟.  Show your work to support the choice.   
 

Commentary on Question: 
Most candidates worked on this part and in general they did well, common 
mistakes were typos when entering the formulae in Excel. Candidates who had 
such errors got partial credit for this part  
 
To parametrize 𝛾𝛾 and �̅�𝑟, the values of the parameters should produce bond prices 
that are closest to the observed market values. Minimum least square of difference 
between modeled vs. observed values can be used as the criteria. 
 
Formulae for A and B are in the Formula Sheet provided to all candidates during 
the exam. 
 
Option 3 is the correct answer, for calculations see the Excel spreadsheet. 

 
(c) Determine the replicating portfolio at time 0, for the zero-coupon bond 

𝑍𝑍0(2 𝑦𝑦𝑒𝑒𝑉𝑉𝑟𝑟) using the zero-coupon bond 𝑍𝑍0(4 𝑦𝑦𝑒𝑒𝑉𝑉𝑟𝑟) and cash.   
 

Commentary on Question: 
Most candidates attempted this part. Common errors were wrong formula for ∆ 
or the replicating portfolio. Partial credit was given for the correct set up of the 
problem but wrong or no calculations. 

 
The replicating portfolio for 𝑍𝑍0(2) using 𝑍𝑍0(4) should consist of ∆ unit of 𝑍𝑍0(4) and cash: 

𝑃𝑃0 = ∆𝑍𝑍0(4) + 𝐶𝐶0 = 𝑍𝑍0(2) 
Choose ∆ such that 

∆=
𝜕𝜕𝑍𝑍0(2) 𝜕𝜕𝑟𝑟⁄
𝜕𝜕𝑍𝑍0(4) 𝜕𝜕𝑟𝑟⁄ =

𝐵𝐵(0,2)𝑍𝑍0(2)
𝐵𝐵(0,4)𝑍𝑍0(4)

 

Then the Cash position is  
𝐶𝐶0 = 𝑍𝑍0(2) − ∆𝑍𝑍0(4) 

For calculations see Excel.
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6. Continued 
 
(d) Calculate, 𝑃𝑃0.5, the value of the rebalanced replicating portfolio immediately after 

the rebalancing at time 0.5.   
 

Commentary on Question: 
Candidates did not do well in this part. Common errors were wrong ∆, wrong 
rollforward of the cash position, etc. Partial credits were given for calculating the 
correct ∆, or for the correct problem set up but no calculations. 

 
At time 0.5, re-calculate the ∆ as  

∆=
𝜕𝜕𝑍𝑍0.5(2) 𝜕𝜕𝑟𝑟⁄
𝜕𝜕𝑍𝑍0.5(4) 𝜕𝜕𝑟𝑟⁄ =

𝐵𝐵(0.5,2)𝑍𝑍0.5(2)
𝐵𝐵(0.5,4)𝑍𝑍0.5(4)

 

 
New Cash position at t=0.5 required is 

𝐶𝐶0+0.5  = 𝐶𝐶0  +  𝐶𝐶0𝑟𝑟0𝑑𝑑𝑡𝑡 −  𝐶𝐶𝑉𝑉𝑠𝑠ℎ 𝑙𝑙𝑒𝑒𝑒𝑒𝑑𝑑𝑒𝑒𝑑𝑑/𝑔𝑔𝑒𝑒𝑙𝑙𝑒𝑒𝑟𝑟𝑉𝑉𝑡𝑡𝑒𝑒𝑑𝑑 𝑓𝑓𝑜𝑜𝑟𝑟 𝑟𝑟𝑒𝑒𝑏𝑏𝑉𝑉𝑙𝑙𝑉𝑉𝑙𝑙𝑐𝑐𝑖𝑖𝑙𝑙𝑔𝑔 
 
Cash needed/generated for rebalancing is 

(𝛥𝛥0.5  −  𝛥𝛥0)𝑍𝑍0.5(4) 
Therefore the portfolio value at t=0.5 is 

𝑃𝑃0.5 = Δ𝜕𝜕+𝑑𝑑𝜕𝜕𝑍𝑍4,𝜕𝜕+𝑑𝑑𝜕𝜕 + 𝐶𝐶𝜕𝜕+𝑑𝑑𝜕𝜕 
 
For Calculations see Excel. 

 
(e)  

(i) Illustrate a relative value trade strategy using 𝑍𝑍0(2 𝑦𝑦𝑒𝑒𝑉𝑉𝑟𝑟) and 𝑍𝑍0(4 𝑦𝑦𝑒𝑒𝑉𝑉𝑟𝑟). 
 

(ii) Calculate the profit of the strategy at time 0.5.   
 
Commentary on Question: 
About half of the candidates attempted this part (i). Common mistakes were not 
identifying the correct arbitrage or wrong calculations. Candidates who identified 
the correct strategy only got partial credit. 

 
(i) Based on the parameters and given bond prices, bond 𝑍𝑍0(2) is over-priced (market 

price is higher than the modeled price) and 𝑍𝑍0(4) under-priced according to the 
Vasicek model (from the question (b) above). Thus a relative value trade strategy can 
be set up to short 𝑍𝑍0(2) and long replicating portfolio of 𝑍𝑍0(2) using 𝑍𝑍0(4). 

 
Execute the strategy as follow: 

1. At time 0: 
- Short sell 𝑍𝑍0(2) for 9,248.49 
- Long ∆= 0.8059 unit of 𝑍𝑍0(4) 
- Invest cash position of 2,487.3 at overnight deposit yielding the short rate (initial yield is 

𝑟𝑟0 = 3%) 
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6. Continued 
 

2. After time 0, dynamically re-balance the replicating portfolio so that at time 𝑇𝑇 = 2, the 
replication portfolio generates 10,000 to deliver the notional of the short sold bond. If the 
replicating portfolio is rebalanced in continuous time, the portfolio can replicate 𝑍𝑍𝜕𝜕(2) 
without gain/loss after time 0. 

(ii) Profit from the strategy: 
Based on observed bond prices, gain from setting up the strategy at time 0 is 9,400−
0.8059 × 8,300− 2,487.3 = 224.01. There is no future gain/loss after time 0 by dynamically 
rebalancing the replicating portfolio. Thus profit from the strategy is 224.01. 
 
(f) List two considerations when executing a relative value trade strategy as in part 

(e)(i).   
 

Commentary on Question: 
About half of the candidates attempted this part. This part asks about the 
shortcomings of the Vasicek model. However, most of the attempts discussed 
general shortcomings of trading strategies, while such answers were correct in 
general, they do not answer the question asked, hence they got only partial credit.  

 
The relative value trade strategy in part d) should work if Vasicek model is correct. 
However, the model is always imperfect, especially for a one factor model. The one-
factor Vasicek model has known disadvantages such as: 
Perfectly correlated short- and long-term interest rates, and thus inability to capture 
curvature of the yield curve properly. 
Understating volatilities for long term rates 
 
Thus, the strategy may not generate the profit as expected, as the replication strategy may 
not work as expected. Traders should only undertake such strategies when the apparent 
arbitrage is big enough to cover potential losses in the replication strategy.   
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7. Learning Objectives: 
3. The candidate will understand: 

• How to apply the standard models for pricing financial derivatives. 
• The implications for option pricing when markets do not satisfy the common 

assumptions used in option pricing theory. 
• How to evaluate risk exposures and the issues in hedging them. 

 
Learning Outcomes: 
(3d) Demonstrate an understanding of how to delta hedge, and the interplay between 

hedging assumptions and hedging outcomes. 
 
(3g) Describe and explain some approaches for relaxing the assumptions used in the 

Black-Scholes-Merton formula. 
 
(3h) Compare and contrast the various kinds of volatility, e.gl, actual, realized, implied 

and forward, etc. 
 
(3i) Define and explain the concept of volatility smile and some arguments for its 

existence. 
 
Sources: 
QFIQ-115-17: Which Free Lunch Would You Like Today, Sir?: Delta Hedging, 
Volatility Arbitrage and Optimal Portfolios 
 
Commentary on Question: 
Commentary listed underneath question component. 
 
Solution: 
(a) List the pros and the cons of hedging with implied volatility and actual volatility.   
 

Commentary on Question: 
Candidates generally did well on this part of the question.  
 

Pros of hedging with implied volatility: 
- No local fluctuations in profit and loss (continually making a profit) 
- Only need to be on the right side of the trade to profit (buy when actual is going to 

be higher than implied and sell if lower) 
- The number that goes into the delta is implied volatility, which is easy to observe 
- The profit each day is deterministic 

Cons of hedging with implied volatility: 
- You don’t know how much money you will make, only that it is positive.  The 

present value of the total profit at expiration is path dependent 
Pros of hedging with actual/realized volatility: 

- Profit at expiration is known when hedging with actual volatility
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7. Continued 
 
Cons of hedging with actual/realized volatility: 

- Subject to profit and loss fluctuations during the life of the option, which can be 
less appealing from a local risk management perspective 

- Unlikely to be totally confident in your volatility forecast (the number put into the 
delta formula) 

 
(b) Choose the most appropriate volatility for hedging under each of the following 

two constraints.   
 

(i) Mark to model 
 

(ii) Mark to market  
 

Commentary on Question: 
Candidates generally did well on this question.   
 
Under the constraint of “Mark to  model” where you are not concerned about the 
day-to-day fluctuations in the mark-to-market profit and loss, it is better to hedge 
with actual volatility if you are confident about estimating the actual volatilities. 
Its expected total profit is not far from the optimal payoff under hedging with 
implied vol and its standard deviation of final profit is zero. 
 
Under the constraint of “Mark to Market” where you must worry about the short-
term fluctuations of profit and loss, it is more appropriate to hedge with implied 
volatility under which you continuously make profit without much short-term 
fluctuation and annoyance from risk management despite the final profit is path 
dependent. 

 
(c) Design a volatility arbitrage to make money assuming that your prediction is 

correct and that you hedge with actual volatility.   
 

Commentary on Question: 
Most candidates noted why you should buy the call option, but not all did (i.e., the 
call was undervalued since actual volatility is higher than implied).  Most 
candidates correctly wrote to buy the call option and sell the stock, although not 
all mentioned that the number of shares is determined by delta (N(d1)). Many 
candidates missed the last piece of the volatility arbitrage strategy – to invest the 
cash earning the risk-free rate or borrow paying the risk-free rate – and many 
candidates missed the fact that the volatility arbitrage needs to be rebalanced 
frequently. 
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7. Continued 
 

Because the predicted actual volatility is higher than the implied volatility, the 
call option is under-valued. 
 
Thus, the volatility arbitrage strategy is to:  
(a) Buy the call option 
(b) Sell the stock XYZ by shares determined by the Delta N(d1) where d1 is 

calculated using actual volatility 
(c) Invest the cash earning the risk-free rate or borrow paying the risk-free rate 
The strategy needs to be executed and the delta hedge to be rebalanced as 
frequently as possible (e.g., daily) 

 
(d) Calculate the final profit from the arbitrage executed in part (c).   
 

Commentary on Question: 
Many candidates did well here.   

 
 S=100, K=100, r=0%, T=1 

σ(actual) = 30%; σ(implied) = 20% 

 

 
Plug in all the values, the Black-Scholes formula for the call option can be simplified 
because of r=0, d=0, T=1, and S/K=1 
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7. Continued 
 
c = 2*100*[Norm(0.15) – Norm(0.1)] = 3.958
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8. Learning Objectives: 
3. The candidate will understand: 

• How to apply the standard models for pricing financial derivatives. 
• The implications for option pricing when markets do not satisfy the common 

assumptions used in option pricing theory. 
• How to evaluate risk exposures and the issues in hedging them. 

 
Learning Outcomes: 
(3a) Demonstrate an understanding of option pricing techniques and theory for equity 

derivatives. 
 
(3b) Identify limitations of the Black-Scholes-Merton pricing formula. 
 
(3c) Demonstrate an understating of the different approaches to hedging – static and 

dynamic. 
 
(3d) Demonstrate an understanding of how to delta hedge, and the interplay between 

hedging assumptions and hedging outcomes. 
 
(3i) Define and explain the concept of volatility smile and some arguments for its 

existence. 
 
Sources: 
The Volatility Smile, Derman, Emanuel and Miller, Michael B., 2016 
 
QFIQ-120-19: Chapters 6 and 7 of Pricing and Hedging Financial Derivatives, Marroni, 
Leonardo and Perdomo, Irene, 2014 
 
QFIQ-115-17: Which Free Lunch Would You Like Today, Sir?: Delta Hedging, 
Volatility Arbitrage and Optimal Portfolios 
 
Commentary on Question: 
This question tested candidates’ knowledge on profiles of the Greeks such as Delta, 
Vega, Theta and Gamma, etc. and its application to analyze the risk profiles on synthetic 
trading strategies. It also tested the Vanna approach to deal with Greek profile change 
due to volatility skew. Majority of the candidates performed reasonably well from (a) – 
(e) as they can get partial credits by providing some attributes for Greeks but unable to 
cover all the key characteristics. However, candidates performed below expectation from 
(f) – (g) as they show less familiarity with the topic.  
 
Solution: 
(a) Describe the key characteristics of its Delta profile. 
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8. Continued 
 

Commentary on Question: 
In general, candidates performed as expected. Most candidates listed a few 
characteristics of the Delta of Strategy A. However, only handful candidates 
provided all key characteristics. 
 
Option Strategy A is a call spread strategy. The delta of the call spread is the sum 
of the delta of the two calls. 
The delta of the call spread is positive (above x-axis) because it is long the ATM 
call (with a lower strike and thus higher delta) and short the OTM call (with a 
higher strike and thus lower delta) 
The delta of the call spread approaches zero when it is far out of the money when 
stock price is far away from 100 on both sides (S<70 and S>160, for example). 
The delta of the call spread is the highest when the stock price is in between of the 
two strikes (100 and 120). 

 
(b) Draw the Delta profile in the Excel spreadsheet.  
 

Commentary on Question: 
Candidates performed well on this question. Majority of the candidates received 
full credits. Some candidates made minor formula mistakes and received partial 
credits. 
 
See excel. 

 
(c) Describe the key characteristics of its Gamma profile.   
 

Commentary on Question: 
Many candidates were able to identify the basic features of Gamma profiles of 
vanilla options and applied them to describe that of the call spread. However, 
many candidates simply provided the conclusion of the Gamma profile without 
providing details that support the conclusions. Some candidates misstate that 
strategy price approaches 0 when stock price is below 100 or above 120, failed to 
realize that strategy need to be far away from the strikes to approach 0. 

 
The Gamma of the call spread is the sum of the Gamma of the two calls. 
 
When the stock moves further and further away out-of-the-money, option value 
becomes very insensitive and thus Gamma (and Delta) should approach zero. 
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8. Continued 
 
When the stock price is close to 100, the gamma of the ATM call, which the call 
spread is long, should dominate the gamma of the OTM call, which the call 
spread is short, and thus the net Gamma is positive. Conversely, when the stock 
price is close to 120, the gamma of the OTM call, which the call spread is short, 
should dominate the gamma of the ATM call, which the call spread is short, and 
thus the net Gamma is negative. 
 
In between, the net Gamma should cross zero where the net Delta is maximized. 

 
(d) Describe their key characteristics of its Vega and Theta profiles.   
 

Commentary on Question: 
Many candidates identified that Vega has a similar profile to Gamma and Theta 
is approximately a flip of the Gamma profile. However, many candidates did not 
provide sufficient reasoning on why the strategy of Vega and Theta has such a 
profile. 

 
Vega has a similar profile as Gamma and flips from positive to negative as the 
stock price rises and flips from negative to positive as the stock price falls. Theta 
usually shows the opposite of the Gamma and thus its profile is approximately a 
flip of the Gamma profile. 
 
Both Vega and Theta will approach zero when the stock price moves sufficiently 
further away from the spot price. 
 
Vega: 
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8. Continued 
 
Theta:  

 
 
(e) Sketch the Vega profile and describe the key characteristics.   
 

Commentary on Question: 
Many candidates identified that strategy B was a risk reversal strategy and were 
able to describe its Vega profile. Some candidates only sketched the Vega profile 
without sufficiently describing its characteristics therefore received partial 
credits.  

 
Option Strategy B is a risk reversal strategy. The long position on the call gives a 
long Vega position, whereas the short position on the put gives a short Vega 
position. The overall Vega is the sum of the Vega of the long call and the short 
put. 
 
Vega, Gamma, and Theta tend to reach their maximum values when the 
underlying is close to their respective strikes. Thus, as the underlying approaches 
110, the Vega from the call option will dominate. Similarly, as the underlying 
approaches 90, the Vega from the put option will prevail. 
 
Thus, Vega is positive around 110 area and negative around 90 area and crosses 
zero around 100. 
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8. Continued 
 
Sketch the graph as follows: 

 
 
(f) Evaluate the impact of the change to Option Strategy B.   
 

Commentary on Question: 
Candidates performed below expectations. Many candidates did not analyze the 
relationship between the option values and the corresponding volatility change 
and therefore, made the wrong conclusion. Some candidates did not realize that 
the price change for 90-strike option is larger than that of 110-strike due to the 
magnitude of the volatility change.  

 
Option Strategy B takes a long position on a call option with a strike at 110 and a 
short position on a put option with a strike at 90. 
 
This shows that the strategy takes a long position on the implied volatility at 110 
and a short position on the implied volatility at 90. 
 
The change in the volatility skew indicates both implied volatilities at 110 and at 
90 have decreased but the implied vol at 110 has decreased less than the implied 
vol at 90 has decreased, so the long call loses less than the short put loses. 
 
On the net basis, the option strategy benefits from the flattening of the volatility 
skew. 

 
(g) Define its Vanna ratio and Vanna contribution.   
 

Commentary on Question: 
Candidates performed below expectations. While many candidates were able to 
give the definition of Vanna, they could not describe well what Vanna 
contribution is. Almost all candidates failed to identify that the Vanna ratio is 1 as 
the strategy B itself is a risk reversal.
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8. Continued 
 

Vanna ratio is the ratio of the Vanna of the exotic option, which itself is a Risk 
Reversal, over the Vanna of Risk Reversal, and this ratio is 1. 
 
Vanna contribution is the difference between the market price of the Risk 
Reversal and the Risk Reversal priced with the 50 Delta volatility. It measures 
how “wrong” a risk reversal would be if the volatility smile is ignored and only 
the 50-delta volatility is used for pricing the option. 

 
(h) Describe how to apply the Vanna adjustment.   
 

Commentary on Question: 
Candidates do not perform well in general in this question. Many candidates are 
able to list the formula for Vanna cost but missed one or two steps for the 
procedure for applying the Vanna adjustment. Very few candidates received full 
credits. 

 
Calculated the Vanna ratio and the Vanna contribution defined in (g) 
 
Calculate the Vanna cost = Vanna ratio X Vanna contribution 
 
Obtain the option price using Black-Scholes framework, call it BSPrice for the 
risk reversal option in Option B. 
 
The Vanna adjusted option price 
Vanna-Adjusted Price  = BSPrice + Vanna cost 
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9. Learning Objectives: 
3. The candidate will understand: 

• How to apply the standard models for pricing financial derivatives. 
• The implications for option pricing when markets do not satisfy the common 

assumptions used in option pricing theory. 
• How to evaluate risk exposures and the issues in hedging them. 

4. The candidate will learn how to apply the techniques of quantitative finance to 
applied business contexts. 
 
Learning Outcomes: 
(3a) Demonstrate an understanding of option pricing techniques and theory for equity 

derivatives. 
 
(3e) Analyze the Greeks of common option strategies. 
 
(4a) Identify and evaluate embedded options in liabilities, specifically indexed annuity 

and variable annuity guarantee riders (GMAB, GMDB, GMWB and GMIB). 
 
(4c) Demonstrate an understanding of dynamic and static hedging for embedded 

guarantees, including:  
(i)  Risks that can be hedged, including equity, interest rate, volatility and cross 

Greeks. 
(ii)  Risks that can only be partially hedged or cannot be hedged including 

policyholder behavior, mortality and lapse, basis risk, counterparty exposure, 
foreign bonds and equities, correlation and operation failures 

 
Sources: 
QFIQ-132-21, Volatility Smile-Derman-Miller-Ch 03 
 
Commentary on Question: 
The majority of candidates performed poorly on this question. Particularly for parts (b) 
and (c), many candidates either performed poorly on or entirely skipped those questions. 
For those that did attempt the question, the most common mistakes were not being able to 
derive the Greeks for the Asian call option. 
 
Solution: 
(a)  

(i) Identify the type of options which should be purchased.   
 
(ii) Calculate the values in the table below, (assuming a Black-Scholes 

framework):   
Commentary on Question: 
Candidates performed adequately for this part. Most were able to identify that a 
geometric mean Asian option needed to be purchased. 
 

RB = 1,000,000*(1- exp(-0.03)) = 29,554.4664515 
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9. Continued 

 
Amount of ZCBs to buy = (1,000,000 – RB)/1000 = 970.4455335 (assuming each bond 
has a notional of $1,000) 
 
The risk budget should be invested in long ATM geometric mean Asian call options with 
maturity of 1 year. 
 
Using the BS framework, the value of a vanilla European call option is: 
𝐶𝐶0𝐸𝐸  = N(d1) 𝑆𝑆0𝑒𝑒−𝑞𝑞𝜕𝜕 – N(d2)*K*𝑒𝑒−𝑟𝑟𝜕𝜕 where q= continuous dividend rate and d1 = 
ln�𝑆𝑆𝑡𝑡𝑘𝑘 �+�𝑟𝑟−𝑞𝑞+

𝜎𝜎2

2 �𝜕𝜕

𝜎𝜎√𝜕𝜕
  

Substituting in q = −1
2
�𝑟𝑟 − 𝜎𝜎𝑎𝑎2

2
� + 𝑟𝑟 and 𝜎𝜎𝑣𝑣= 𝜎𝜎

√3
  gives: 

𝐶𝐶0𝑣𝑣 = N(d1) 𝑆𝑆0𝑒𝑒
�12�𝑟𝑟−

𝜎𝜎𝑎𝑎
2

2 �−𝑟𝑟�𝜕𝜕 – N(d2)*K*𝑒𝑒−𝑟𝑟𝜕𝜕 and  

d1 = 
ln�𝑆𝑆𝑡𝑡𝑘𝑘 �+�𝑟𝑟 −�−12 �𝑟𝑟−

𝜎𝜎𝑎𝑎
2

2 �+𝑟𝑟�+
𝜎𝜎𝑎𝑎
2

2 �𝜕𝜕

𝜎𝜎𝑎𝑎√𝜕𝜕
 =  

ln�𝑆𝑆𝑡𝑡𝑘𝑘 �+�
1
2�𝑟𝑟−

𝜎𝜎𝑎𝑎
2

2 �+
𝜎𝜎𝑎𝑎
2

2 �𝜕𝜕

𝜎𝜎𝑎𝑎√𝜕𝜕
= 

ln(1)+�12�0.03−
0.22
3
2 �+

0.22
3
2 �

0.2
√3

 = 

0.158771324 
d2 = d1 - 𝜎𝜎𝑣𝑣√𝑡𝑡 = 0. 0.158771324 –  0.2

√3
 = 0.04330127 

𝐶𝐶0𝑣𝑣 = N(0.158771324) ∗ 100𝑒𝑒
�12�0.03−

0.22
3
2 �−0.03�

 – N(0.04330127)*100*𝑒𝑒−0.03 

= 0.563075 ∗ 100𝑒𝑒
�12�0.03−

0.22
3
2 �−0.03�

– 0.517269*100𝑒𝑒−0.03 
= 5.086478857 
# of call options to purchase = RB/C = 29554.4664515/5.086478857 = 5810.398 
𝑝𝑝𝑑𝑑𝑝𝑝𝑣𝑣= 𝑅𝑅𝐵𝐵

1,000,000𝐶𝐶0
𝑎𝑎

100

 = 29554.4664515/(10^4*5.086478857) = 0.581039798 

 
(b)  

(i) Determine the Vega of the Asian call options above.   
 

(ii) Explain the value of the above Vega in relation to the Vega of a European 
call option and why this relation intuitively makes sense.   

 
Commentary on Question: 
Candidates performed poorly in this part. A large majority of candidates did not 
correctly derive the expression for the Vega of an Asian call option necessary for 
part (i). In part (ii), most candidates were able to correctly explain that the Vega 
of an Asian call is less than that of a European call. 
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9. Continued 
 

𝐶𝐶0𝑣𝑣 = N(d1) 𝑆𝑆0𝑒𝑒
�12�𝑟𝑟−

𝜎𝜎𝑎𝑎
2

2 �−𝑟𝑟�𝜕𝜕 – N(d2)*K*𝑒𝑒−𝑟𝑟𝜕𝜕 = 𝑆𝑆0𝑒𝑒−𝑟𝑟𝜕𝜕[N(d1)𝑒𝑒
1
2�𝑟𝑟−

𝜎𝜎2

6 � − 𝑁𝑁(𝑑𝑑2)]  
 
By the product rule and chain rule: 
𝜕𝜕𝜕𝜕0𝑎𝑎

𝜕𝜕𝜎𝜎
 = 𝑆𝑆0𝑒𝑒−𝑟𝑟𝜕𝜕[

−2𝜎𝜎
12

𝑁𝑁(𝑑𝑑1)𝑒𝑒
1
2�𝑟𝑟−

𝜎𝜎2

6 � +  𝑒𝑒
1
2�𝑟𝑟−

𝜎𝜎2

6 �𝑙𝑙(𝑑𝑑1) ∗ 𝜕𝜕
𝜕𝜕𝜎𝜎
𝑑𝑑1 −  𝑙𝑙(𝑑𝑑2) ∗ 𝜕𝜕

𝜕𝜕𝜎𝜎
𝑑𝑑2] 

 

𝜕𝜕
𝜕𝜕𝜎𝜎
𝑑𝑑1 = 𝜕𝜕

𝜕𝜕𝜎𝜎

�12�0.03−
𝜎𝜎2
3
2 �+

𝜎𝜎2
3
2 �

𝜎𝜎
√3

= 𝜕𝜕
𝜕𝜕𝜎𝜎

�0.015+𝜎𝜎
2

12�
𝜎𝜎
√3

= −0.015∗√3
𝜎𝜎2

+  √3
12

= −0.50518 

Note: d2 = d1 - 𝜎𝜎
√3

 -> 𝜕𝜕
𝜕𝜕𝜎𝜎
𝑑𝑑2 =  𝜕𝜕

𝜕𝜕𝜎𝜎
𝑑𝑑1 − 1

√3
=  −1.08253 

 
From Part A, N(d1) = N(0.158771324) = 0.563075 
 
𝜕𝜕𝜕𝜕0𝑎𝑎

𝜕𝜕𝜎𝜎
 = 100𝑒𝑒−0.03(−0.2

6
*1.011735* 0.563075+(𝑒𝑒

1
2�𝑟𝑟−

𝜎𝜎2

6 �𝑙𝑙(𝑑𝑑1) ∗ −0.50518) − (𝑙𝑙(𝑑𝑑2) ∗
−1.08253)) 
 

n(d1) = 𝑒𝑒
−(0.1587713242)

2

√2𝜋𝜋
= 0.393946, n(d2) = 𝑒𝑒

−(0.043301272)
2

√2𝜋𝜋
= 0.398568 

𝜕𝜕𝜕𝜕0𝑎𝑎

𝜕𝜕𝜎𝜎
 = 100𝑒𝑒−0.03(-0.018899 + 1.011735 * 0.393946 * -0.50518 - 0.398568*-1.08253) = 

20.48845 
 Total Option Vega = 20.48845* 1,000,000/100 = 204,884.5 

European call option Vega = 𝑆𝑆0𝑙𝑙(𝑑𝑑1), d1 = 
(𝑟𝑟+𝜎𝜎

2

2 )

𝜎𝜎
=

(0.03+0.04
2 )

0.2
 = 0.25 

Vega = 100*𝑒𝑒
−0.252

2

√2𝜋𝜋
=38.66681168 

 
The Vega of the European call option is greater than the Vega of the Asian option. 

 
This relation makes sense since Asian options sample the underlying asset price 
across the entire option period rather than simply the final price, resulting in a 
shorter average duration for the impact of the volatility. Since volatility and its 
impact on option prices scales with time this results in a lower Vega. 

 
Note: award ½ point for recognizing the European option Vega is larger if 
appropriate value or logic is given. Award second half point as long as the candidate 
references stock prices being sampled across the period rather than just the final 
price, and this resulting in a lower sensitivity to volatility. 
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9. Continued 
 
(c) Determine an initial Delta-Vega hedge position using an ATM 1-year European 

call option and the underlying stocks.   
 

Commentary on Question: 
Candidates performed very poorly in this part. Many candidates skipped this 
question. For those that attempted the question, they were not able to correctly 
calculate the Greeks for the Asian call option.  

 
Need to solve for position such that delta and Vega = 0 
 
Vega of European Call Option = S0 *N’(d1) * Sqrt(T-t) 
 

d1 = 
ln�𝑆𝑆𝑡𝑡𝑘𝑘 �+�𝑟𝑟−𝑞𝑞+

𝜎𝜎2

2 �𝜕𝜕

𝜎𝜎√𝜕𝜕
=  

0+�0.03+0.22

2 �

0.2
 = 0.25 

N’(d1) =  0.386668 
Vega = 100 * 0.386668 =38.6668 
 Need Vega of option to equal 204,884.5 
 Need to buy 204,884.5/38.6668 = 5,298.718798 ATM 1 year euro call options 

Delta of European Call Option = N(d1) = 0.598706 
 
Delta of Asian option: 

𝐶𝐶0𝑣𝑣 = N(d1) 𝑆𝑆𝑒𝑒�
1
2�𝑟𝑟−

𝜎𝜎𝑎𝑎
2

2 �−𝑟𝑟�𝜕𝜕 – N(d2)*K*𝑒𝑒−𝑟𝑟𝜕𝜕  

= 𝑒𝑒−𝑟𝑟𝜕𝜕[𝑆𝑆N(d1)𝑒𝑒
1
2�𝑟𝑟−

𝜎𝜎2

6 � − 𝐾𝐾𝑁𝑁(𝑑𝑑2)]  
 
By the product rule and chain rule: 

𝜕𝜕𝐶𝐶0𝑣𝑣

𝜕𝜕𝑆𝑆
 = 𝑒𝑒−𝑟𝑟𝜕𝜕[N(d1)𝑒𝑒

1
2�𝑟𝑟−

𝜎𝜎2
6 � +  𝑆𝑆𝑒𝑒

1
2�𝑟𝑟−

𝜎𝜎2
6 �𝑙𝑙(𝑑𝑑1) ∗

𝜕𝜕
𝜕𝜕𝑆𝑆

𝑑𝑑1 −  𝐾𝐾 𝑙𝑙(𝑑𝑑2) ∗
𝜕𝜕
𝜕𝜕𝑆𝑆

𝑑𝑑2] 
 
𝜕𝜕
𝜕𝜕𝑆𝑆

𝑑𝑑1 =
ln(𝑆𝑆) − ln(𝑘𝑘) − 𝑓𝑓(r,𝜎𝜎)

𝜎𝜎𝑣𝑣
=

1
𝜎𝜎𝑣𝑣𝑆𝑆

 

𝜕𝜕
𝜕𝜕𝑆𝑆

𝑑𝑑2 =  
𝜕𝜕
𝜕𝜕𝑆𝑆

(𝑑𝑑1 −  𝜎𝜎) =  
1
𝜎𝜎𝑣𝑣𝑆𝑆

 

Note: since k =𝑆𝑆0 

𝜕𝜕0𝑎𝑎

𝜕𝜕
= 𝑒𝑒−𝑟𝑟𝜕𝜕[N(d1)𝑒𝑒

1
2�𝑟𝑟−

𝜎𝜎2

6 � + S𝑒𝑒
1
2�𝑟𝑟−

𝜎𝜎2
6 �

𝑣𝑣(𝑑𝑑1)−𝜕𝜕0𝑣𝑣(𝑑𝑑2)
𝜎𝜎𝑎𝑎𝜕𝜕

] 
 
𝜕𝜕𝜕𝜕0𝑎𝑎

𝜕𝜕𝜕𝜕
 =  𝑒𝑒−0.03 �0.563075 ∗ 1.011735 + 1.011735∗𝑣𝑣(𝑑𝑑1)−𝑣𝑣(𝑑𝑑2)

0.2
� 

= 𝑒𝑒−0.03 �0.563075 ∗ 1.011735 +
1.011735 ∗ 0.393946 − 0.398568

0.2
� 

= 0.970446*[0.569683163 + 0] = 0.552846 
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9. Continued 
 

Portfolio Delta = Asían Option # *Asían Option Delta – European Option Delta 
=0.552846 *1,000,000/100 - 5,298.718798 *0.598706= 2356.09007 
 
Delta of Stock = 1 
Need to sell 2356.09007 shares of stock. 
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10. Learning Objectives: 
4. The candidate will learn how to apply the techniques of quantitative finance to 

applied business contexts. 
 
Learning Outcomes: 
(4a) Identify and evaluate embedded options in liabilities, specifically indexed annuity 

and variable annuity guarantee riders (GMAB, GMDB, GMWB and GMIB). 
 
(4c) Demonstrate an understanding of dynamic and static hedging for embedded 

guarantees, including:  
(i)  Risks that can be hedged, including equity, interest rate, volatility and cross 

Greeks. 
(ii)  Risks that can only be partially hedged or cannot be hedged including 

policyholder behavior, mortality and lapse, basis risk, counterparty exposure, 
foreign bonds and equities, correlation and operation failures 

 
(4e) Demonstrate an understanding of how differences between modeled and actual 

outcomes for guarantees affect financial results over time. 
 
Sources: 
QFIQ-134-22 An Introduction to Computational Risk Management 
 
QFIQ-128-20_Mitigating Interest Rate Risk 
 
Commentary on Question: 
This question is testing the candidates’ ability to recognize embedded option in a 
variable annuity contract with a GMDB rider and derive a delta-rho hedge for it. In 
addition, it tests the candidates’ knowledge of how the difference between the model and 
actual outcomes affect the hedging results for this product. Overall, the attempt rate for 
this question was low, especially for parts a) and b) which involve calculations.   
 
Solution: 
(a) Derive the no-arbitrage value of the net liability 𝐿𝐿𝜕𝜕 at time t.   
 

Commentary on Question: 
Most candidates did not attempt this part of the question. To earn points for this 
question, candidates needed to manipulate the given equation for Lt and derive 
the equation for the expected value. Partial points were awarded to the 
candidates who successfully took the calculation further than copying down the 
given equation, mostly for recognizing that 𝐸𝐸�𝑒𝑒−𝑟𝑟(𝑠𝑠−𝜕𝜕) max(𝐺𝐺 − 𝐹𝐹𝑠𝑠, 0)� is a put 
option and writing down the value.  
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10. Continued 
 
Net Liability = Expected PV of benefits – Expected PV of fee income, which is given: 

𝐿𝐿𝜕𝜕 = 𝑝𝑝𝜕𝜕 𝛾𝛾(Ω𝜕𝜕 − Υ𝜕𝜕) − 𝑝𝑝𝜕𝜕 𝛾𝛾𝐸𝐸ℚ �� 𝑚𝑚𝐹𝐹𝑠𝑠𝑒𝑒−𝑟𝑟(𝑠𝑠−𝜕𝜕) 𝑝𝑝𝑠𝑠−𝜕𝜕 𝛾𝛾+𝜕𝜕𝑑𝑑𝑠𝑠
𝑇𝑇

𝜕𝜕
�

= 𝑝𝑝𝜕𝜕 𝛾𝛾𝐸𝐸ℚ �� 𝑒𝑒−𝑟𝑟(𝑇𝑇−𝜕𝜕)max (𝐺𝐺 − 𝐹𝐹𝑠𝑠, 0) 𝑝𝑝𝑠𝑠−𝜕𝜕 𝛾𝛾+𝜕𝜕𝜇𝜇𝛾𝛾+𝑠𝑠𝑑𝑑𝑠𝑠
𝑇𝑇

𝜕𝜕
�

− 𝑝𝑝𝜕𝜕 𝛾𝛾𝐸𝐸ℚ �� 𝑚𝑚𝐹𝐹𝑠𝑠𝑒𝑒−𝑟𝑟(𝑠𝑠−𝜕𝜕) 𝑝𝑝𝑠𝑠−𝜕𝜕 𝛾𝛾+𝜕𝜕𝑑𝑑𝑠𝑠
𝑇𝑇

𝜕𝜕
� 

 
The no-arbitrage value of the net liability is the expected value with respect to the risk neutral 
measure. Due to independence of mortality and equity return, the first term can be written as 

𝑝𝑝𝜕𝜕 𝛾𝛾𝐸𝐸ℚ �� 𝑒𝑒−𝑟𝑟(𝑇𝑇−𝜕𝜕)max (𝐺𝐺 − 𝐹𝐹𝑠𝑠, 0) 𝑝𝑝𝑠𝑠−𝜕𝜕 𝛾𝛾+𝜕𝜕𝜇𝜇𝛾𝛾+𝑠𝑠𝑑𝑑𝑠𝑠
𝑇𝑇

𝜕𝜕
�

= � 𝐸𝐸ℚ[𝑒𝑒−𝑟𝑟(𝑇𝑇−𝜕𝜕) max(𝐺𝐺 − 𝐹𝐹𝑠𝑠, 0)] 𝑝𝑝𝜕𝜕 𝛾𝛾 𝑝𝑝𝑠𝑠−𝜕𝜕 𝛾𝛾+𝜕𝜕𝜇𝜇𝛾𝛾+𝑠𝑠𝑑𝑑𝑠𝑠
𝑇𝑇

𝜕𝜕

= � 𝐸𝐸ℚ[𝑒𝑒−𝑟𝑟(𝑇𝑇−𝜕𝜕) max(𝐺𝐺 − 𝐹𝐹𝑠𝑠, 0)] 𝑝𝑝𝑠𝑠 𝛾𝛾𝜇𝜇𝛾𝛾+𝑠𝑠𝑑𝑑𝑠𝑠
𝑇𝑇

𝜕𝜕
 

Since 𝐹𝐹𝜕𝜕 = 𝑆𝑆𝜕𝜕𝑒𝑒−𝑚𝑚𝜕𝜕 
𝑑𝑑𝐹𝐹𝜕𝜕 = −𝑚𝑚𝑒𝑒−𝑚𝑚𝜕𝜕𝑆𝑆𝜕𝜕𝑑𝑑𝑡𝑡 + 𝑒𝑒−𝑚𝑚𝜕𝜕𝑑𝑑𝑆𝑆𝜕𝜕 = −𝑚𝑚𝑒𝑒−𝑚𝑚𝜕𝜕𝑆𝑆𝜕𝜕𝑑𝑑𝑡𝑡 + 𝑟𝑟𝑒𝑒−𝑚𝑚𝜕𝜕𝑆𝑆𝜕𝜕𝑑𝑑𝑡𝑡 + 𝜎𝜎𝑒𝑒−𝑚𝑚𝜕𝜕𝑆𝑆𝜕𝜕𝑑𝑑𝑊𝑊𝜕𝜕

= 𝑒𝑒−𝑚𝑚𝜕𝜕𝑆𝑆𝜕𝜕(𝑟𝑟 −𝑚𝑚)𝑑𝑑𝑡𝑡 + 𝜎𝜎𝑒𝑒−𝑚𝑚𝜕𝜕𝑆𝑆𝜕𝜕𝑑𝑑𝑊𝑊𝜕𝜕 = 𝐹𝐹𝜕𝜕(𝑟𝑟 − 𝑚𝑚)𝑑𝑑𝑡𝑡 + 𝜎𝜎𝐹𝐹𝜕𝜕𝑑𝑑𝑊𝑊𝜕𝜕 
 
𝐸𝐸�𝑒𝑒−𝑟𝑟(𝑠𝑠−𝜕𝜕) max(𝐺𝐺 − 𝐹𝐹𝑠𝑠, 0)� is the no-arbitrage price of a put option, thus 

𝜕𝜕𝑉𝑉𝑙𝑙𝑢𝑢𝑒𝑒 𝑜𝑜𝑓𝑓 𝑏𝑏𝑒𝑒𝑙𝑙𝑒𝑒𝑓𝑓𝑖𝑖𝑡𝑡𝑠𝑠 = � �𝐺𝐺𝑒𝑒−𝑟𝑟(𝑠𝑠−𝜕𝜕)𝑁𝑁(−𝑑𝑑2)− 𝑆𝑆𝜕𝜕𝑒𝑒−𝑚𝑚(𝑠𝑠−𝜕𝜕)𝑁𝑁(−𝑑𝑑1)� 𝑝𝑝𝑠𝑠 𝛾𝛾𝜇𝜇𝛾𝛾+𝑠𝑠𝑑𝑑𝑠𝑠
𝑇𝑇

𝜕𝜕
 

where 𝑑𝑑1 =
𝑣𝑣𝑣𝑣𝑆𝑆𝑡𝑡𝐺𝐺+(𝑠𝑠−𝜕𝜕)(𝑟𝑟−𝑚𝑚+𝜎𝜎

2

2 )

𝜎𝜎√𝑠𝑠−𝜕𝜕
 and 𝑑𝑑2 = 𝑑𝑑1 − 𝜎𝜎√𝑠𝑠 − 𝑡𝑡.  

 
The second term is the PV of fees:  

𝑝𝑝𝜕𝜕 𝛾𝛾𝐸𝐸ℚ �∫ 𝑚𝑚𝐹𝐹𝑠𝑠𝑒𝑒−𝑟𝑟(𝑠𝑠−𝜕𝜕) 𝑝𝑝𝑠𝑠−𝜕𝜕 𝛾𝛾+𝜕𝜕𝑑𝑑𝑠𝑠
𝑇𝑇
𝜕𝜕 � = 𝐸𝐸 �∫ 𝑒𝑒−𝑟𝑟(𝑠𝑠−𝜕𝜕)𝑚𝑚𝐹𝐹𝑠𝑠 𝑝𝑝𝑠𝑠 𝛾𝛾𝑑𝑑𝑠𝑠

𝑇𝑇
𝜕𝜕 � =

∫ 𝐸𝐸�𝑒𝑒−𝑟𝑟(𝑠𝑠−𝜕𝜕)𝑚𝑚𝐹𝐹𝑠𝑠 𝑝𝑝𝑠𝑠 𝛾𝛾�𝑑𝑑𝑠𝑠
𝑇𝑇
𝜕𝜕 = ∫ 𝐸𝐸�𝑒𝑒−𝑟𝑟(𝑠𝑠−𝜕𝜕)𝑆𝑆𝑠𝑠�𝑒𝑒−𝑚𝑚𝑠𝑠𝑚𝑚 𝑝𝑝𝑠𝑠 𝛾𝛾𝑑𝑑𝑠𝑠

𝑇𝑇
𝜕𝜕 =

∫ 𝑆𝑆𝜕𝜕𝑒𝑒−𝑚𝑚𝑠𝑠𝑚𝑚 𝑝𝑝𝑠𝑠 𝛾𝛾𝑑𝑑𝑠𝑠
𝑇𝑇
𝜕𝜕 = 𝑚𝑚𝐹𝐹𝜕𝜕 ∫ 𝑒𝑒−𝑚𝑚(𝑠𝑠−𝜕𝜕) 𝑝𝑝𝑠𝑠 𝛾𝛾𝑑𝑑𝑠𝑠

𝑇𝑇
𝜕𝜕  

 
(b) Derive the positions of stock, zero-coupon bond and money market account for a 

portfolio Π𝜕𝜕 that hedges the Delta and Rho of the net liability in  part (a).   
 

Commentary on Question: 
A lot of candidates did not attempt this part of the question. To earn points for 
this part, candidates needed to correctly describe the positions in underlying, 
bond, and money market account to set up the hedge, and derive the equation for 
the positions, especially for 𝜌𝜌t and Bt. Partial points were awarded for describing 
the hedge, although most candidates did not finish the derivation of the positions. 
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10. Continued 
 

To hedge delta and rho of 𝐿𝐿𝜕𝜕, invest in  
- ∆𝜕𝜕 share of the underlying 𝑆𝑆𝜕𝜕 and ∆𝜕𝜕=

𝜕𝜕𝐿𝐿𝑡𝑡
𝜕𝜕𝜕𝜕𝑡𝑡

, which is given 

- 𝜌𝜌𝜕𝜕 unit in the zero-coupon bond and 𝜌𝜌𝜕𝜕 =
𝜕𝜕𝐿𝐿𝑡𝑡

𝜕𝜕𝑟𝑟�
𝜕𝜕𝑃𝑃𝑡𝑡

𝜕𝜕𝑟𝑟�
 

- 𝐵𝐵𝜕𝜕 in the money market account 
- Π𝜕𝜕 = ∆𝜕𝜕𝑆𝑆𝜕𝜕 + 𝜌𝜌𝜕𝜕𝑃𝑃𝜕𝜕 + 𝐵𝐵𝜕𝜕 = 𝐿𝐿𝜕𝜕  

 

𝜌𝜌𝜕𝜕 =
𝜕𝜕𝐿𝐿𝜕𝜕

𝜕𝜕𝑟𝑟�
𝜕𝜕𝑃𝑃𝜕𝜕

𝜕𝜕𝑟𝑟�
=
−∫ 𝐺𝐺(𝑠𝑠 − 𝑡𝑡)𝑒𝑒−𝑟𝑟(𝑠𝑠−𝜕𝜕)𝑁𝑁(−𝑑𝑑2) 𝑝𝑝𝑠𝑠 𝛾𝛾𝜇𝜇𝛾𝛾+𝑠𝑠𝑑𝑑𝑠𝑠

𝑇𝑇
𝜕𝜕

−(𝑇𝑇 − 𝑡𝑡)𝑒𝑒−𝑟𝑟(𝑇𝑇−𝜕𝜕) =

=
∫ 𝐺𝐺(𝑠𝑠 − 𝑡𝑡)𝑒𝑒−𝑟𝑟(𝑠𝑠−𝜕𝜕)𝑁𝑁(−𝑑𝑑2) 𝑝𝑝𝑠𝑠 𝛾𝛾𝜇𝜇𝛾𝛾+𝑠𝑠𝑑𝑑𝑠𝑠
𝑇𝑇
𝜕𝜕

(𝑇𝑇 − 𝑡𝑡)𝑒𝑒−𝑟𝑟(𝑇𝑇−𝜕𝜕)  

And 
𝐵𝐵𝜕𝜕 = 𝐿𝐿𝜕𝜕 − ∆𝜕𝜕𝑆𝑆𝜕𝜕 − 𝜌𝜌𝜕𝜕𝑃𝑃𝜕𝜕

= � �𝐺𝐺𝑒𝑒−𝑟𝑟(𝑠𝑠−𝜕𝜕)𝑁𝑁(−𝑑𝑑2)− 𝑆𝑆𝜕𝜕𝑒𝑒−𝑚𝑚(𝑠𝑠−𝜕𝜕)𝑁𝑁(−𝑑𝑑1)� 𝑝𝑝𝑠𝑠 𝛾𝛾𝜇𝜇𝛾𝛾+𝑠𝑠𝑑𝑑𝑠𝑠
𝑇𝑇

𝜕𝜕

− 𝑚𝑚𝐹𝐹𝜕𝜕 � 𝑒𝑒−𝑚𝑚(𝑠𝑠−𝜕𝜕) 𝑝𝑝𝑠𝑠 𝛾𝛾𝑑𝑑𝑠𝑠
𝑇𝑇

𝜕𝜕
− 𝑆𝑆𝜕𝜕 � 𝐺𝐺𝑒𝑒−𝑚𝑚(𝑠𝑠−𝜕𝜕)[𝑁𝑁(𝑑𝑑1) − 1] 𝑝𝑝𝑠𝑠 𝛾𝛾𝜇𝜇𝛾𝛾+𝑠𝑠𝑑𝑑𝑠𝑠

𝑇𝑇

𝜕𝜕

+ 𝑚𝑚𝑆𝑆𝜕𝜕 � 𝑒𝑒−𝑚𝑚𝑠𝑠 𝑝𝑝𝑠𝑠 𝛾𝛾𝑑𝑑𝑠𝑠
𝑇𝑇

𝜕𝜕
−
∫ 𝐺𝐺(𝑠𝑠 − 𝑡𝑡)𝑒𝑒−𝑟𝑟(𝑠𝑠−𝜕𝜕)𝑁𝑁(−𝑑𝑑2) 𝑝𝑝𝑠𝑠 𝛾𝛾𝜇𝜇𝛾𝛾+𝑠𝑠𝑑𝑑𝑠𝑠
𝑇𝑇
𝜕𝜕

(𝑇𝑇 − 𝑡𝑡)𝑒𝑒−𝑟𝑟(𝑇𝑇−𝜕𝜕) 𝑒𝑒−𝑟𝑟(𝑇𝑇−𝜕𝜕) 

𝑚𝑚𝑆𝑆𝜕𝜕 � 𝑒𝑒−𝑚𝑚𝑠𝑠 𝑝𝑝𝑠𝑠 𝛾𝛾𝑑𝑑𝑠𝑠
𝑇𝑇

𝜕𝜕
= 𝑚𝑚𝐹𝐹𝜕𝜕𝑒𝑒𝑚𝑚𝜕𝜕 � 𝑒𝑒−𝑚𝑚𝑠𝑠 𝑝𝑝𝑠𝑠 𝛾𝛾𝑑𝑑𝑠𝑠

𝑇𝑇

𝜕𝜕
= 𝑚𝑚𝐹𝐹𝜕𝜕 � 𝑒𝑒−𝑚𝑚(𝑠𝑠−𝜕𝜕) 𝑝𝑝𝑠𝑠 𝛾𝛾𝑑𝑑𝑠𝑠

𝑇𝑇

𝜕𝜕
 

Thus 

𝐵𝐵𝜕𝜕 = � �𝐺𝐺𝑒𝑒−𝑟𝑟(𝑠𝑠−𝜕𝜕)𝑁𝑁(−𝑑𝑑2) − 𝑆𝑆𝜕𝜕𝑒𝑒−𝑚𝑚(𝑠𝑠−𝜕𝜕)𝑁𝑁(−𝑑𝑑1)− 𝑆𝑆𝜕𝜕𝐺𝐺𝑒𝑒−𝑚𝑚(𝑠𝑠−𝜕𝜕)[𝑁𝑁(𝑑𝑑1) − 1]
𝑇𝑇

𝜕𝜕

−
𝑠𝑠 − 𝑡𝑡
𝑇𝑇 − 𝑡𝑡

𝐺𝐺𝑒𝑒−𝑟𝑟(𝑠𝑠−𝜕𝜕)𝑁𝑁(−𝑑𝑑2)� 𝑝𝑝𝑠𝑠 𝛾𝛾𝜇𝜇𝛾𝛾+𝑠𝑠𝑑𝑑𝑠𝑠 

𝐵𝐵𝜕𝜕 = � �
𝑇𝑇 − 𝑠𝑠
𝑇𝑇 − 𝑡𝑡

𝐺𝐺𝑒𝑒−𝑟𝑟(𝑠𝑠−𝜕𝜕)𝑁𝑁(−𝑑𝑑2) − 𝑆𝑆𝜕𝜕𝑒𝑒−𝑚𝑚(𝑠𝑠−𝜕𝜕)𝑁𝑁(−𝑑𝑑1)(1− 𝐺𝐺)� 𝑝𝑝𝑠𝑠 𝛾𝛾𝜇𝜇𝛾𝛾+𝑠𝑠𝑑𝑑𝑠𝑠
𝑇𝑇

𝜕𝜕
 

 
(c) Describe the hedging effectiveness you expect to observe under each of the 3 

models of simulating interest rates (specified in the table above).  Explain your 
reasoning.   

 
Commentary on Question: 
Many of the candidates who attempted this question did relatively well, as they 
were able to correctly order the three models for their hedging effectiveness and 
describe reasoning for their response. But some candidates did not properly 
understand the question and directly compared the pros and cons of the three 
models for interest rate hedging, which did not earn points. 
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10. Continued 
 

For the control where interest rate is not simulated stochastically, and follows the 
deterministic path 𝑟𝑟𝜕𝜕, the hedging is expected to be effective, since the hedging 
model is the same as the simulation model used for the assessment. Hedging 
gain/loss at time 𝑇𝑇 should be small. 

 
For interest rate model option 1, interest rates are simulated stochastically, instead 
of the deterministic interest 𝑟𝑟𝜕𝜕 which is used to develop the hedge. Higher hedging 
errors are expected at maturity 𝑇𝑇 due the model risk that deterministic assumption 
𝑟𝑟𝜕𝜕 does not capture all the variabilities in the simulated interest scenarios.  

 
For interest rate model option 2, additional difference between the simulation 
model and the hedging model is introduced due to the additional factors in the 
simulating model, which allows yield curve to take on different shapes. Thus, the 
hedging error is expected to be higher than option 1. 

 
(d) Describe changes in hedging effectiveness in comparison to part (c) for the 

Interest rate model 1 and the Interest rate model 2.   
 

Commentary on Question: 
Some candidates did well on this part, though many did not properly understand 
the question and made general comparison of the two models for interest rate 
hedging, which did not earn points.  

 
For interest rate model option 1, using the one-factor Vasicek model to develop 
the hedge should improve the hedging effectiveness when compared to using 
deterministic 𝑟𝑟𝜕𝜕. GMDB is more impacted by the long-term trend in the interest 
rate, which is relatively well captured by the one-factor Vasicek model compared 
to the simulation model of CIR. Thus, using a stochatic model for developing the 
hedge reduces the model risk vs. the simulation model and improves the hedging 
results. 

 
For interest rate model option 2, using the one-factor Vasicek model to develop 
the hedge may not have significant improvement on the hedging results. As the 
simulation model has a lot more flexibility with three factors and can produce 
simulations with more variability in the shape of the term structure, using a one-
factor stochastic model to develop the hedge does not significantly reduce the 
model risk vs. the simulation model, when compared to a deterministic 𝑟𝑟𝜕𝜕. 

 
 


