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Advanced Short-Term Actuarial Mathematics 

Solutions to Sample Questions 

 
This Study Note contains the solutions to the sample questions of the Advanced Short-Term 
Actuarial Mathematics exam. There may be alternative solution methods that are not presented 
here. 
Different solutions show different levels of accuracy in intermediate results. These model 
solutions are not intended to imply that this is the best rounding for each question. Graders do 
not penalize rounding decisions, unless an answer is rounded to too few digits in the context of 
the problem and the given information. In particular, if a problem in one step asks you to 
calculate something to the nearest 1, and you calculate it as (for example) 823.18, you need not 
bother saying “that’s 823 to the nearest 1”, and you may use 823.18 or 823 in future steps 
In the numerical solutions presented, there may be small rounding differences arising from the 
fact that values used in the calculations are typically more accurate than the intermediate values 
recorded. 
 

Versions: 
Nov 9, 2022 Original set of 20 sample questions published for the ASTAM exam 

Feb. 6, 2024 Added two new sample questions (Questions 21-22); Question 22 is a sample 
Excel question. 

 
Current Version Dated Feb. 6, 2024 
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Question 1  
 

(a)   3400 (2)(2400) (3)(1500) (4)(300)ˆ 1.39
10,000

ˆ 1.39ˆ[ ] 0.000139
10,000

90% CI :   1.39 1.645 0.000139 (1.3706,1.4094)

X

Var
n

λ

λλ

+ + +
= = =

= = =

± =

 

(b)   Using ˆ 1.39λ =  from (a): 
 
Number 

of 
Claims  

Observed 
Number 

of 
Policies 

( )jO  

Expected Number of Policies jE  
2( )j j

j

E O
E
−

 

0 2400 1.3910,000 2490.753e− =  3.307 

1 3400 1.3910,000 (1.39) 3462.147e− =  1.116 

2 2400 1.39 210,000 (1.39) / 2 2406.192e− =  0.016 

3+ 1800 10,000 2490.753 3462.147 2406.192 1640.908− − − =  15.425 

  2χ  19.864 

 
Degrees of freedom: 4–1–1=2 

The p-value is 2 5
2 19.864Pr 5 10χ −  = × > . Since this is very small, it is extremely 

unlikely that this data came from the Poisson distribution with ˆ 1.39λ = , and we reject the 
null hypothesis. 
 

(c)  The K-S test statistic calculations are: 

x  ( )nF x−  ( )nF x  
475,000*( ) 1

75,000
F x

x
 = −  + 

 
Absolute Value 
of Maximum 
Difference 

200 0 0.2 
475,0001 0.01060

75,200
 − = 
 

 0.18940 

1000 0.2 0.4 
475,0001 0.05160

76,000
 − = 
 

 0.34840 
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5000 0.4 0.6 
475,0001 0.22752

80,000
 − = 
 

 0.37248 

10,000 0.6 0.8 
475,0001 0.39387

85,000
 − = 
 

 0.40613 

100,000 0.8 1.0 
475,0001 0.96626

175,000
 − = 
 

 0.16626 

 The test statistic D is the maximum absolute difference, i.e., 0.40613D = . 

The critical value is 21 0.3 56 / .608= . Since 0.6082D < , we do not reject 0H . 

(d)  
(i) Depending on the purpose for which model is to be used, the simplest model 

that reflects reality is generally preferred. 

(ii) If you try enough models, one will look good, even if it is not. 

(iii) Choose the model with the highest p-value under the chi-square goodness-of-fit 
test.  This is consistent with parsimony because the more complex tests have 
lesser degrees of freedom. 
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Question 2  
 

(a) The rates must cover the expected losses and expenses.  Clearly, for the insurer to stay in 
business, income (premiums and investment income) must at least equal outgo (losses and 
expenses).  

Ratemaking should produce rates that make adequate provision for contingencies.  While 
the rates should cover the expected losses, there should be the cost of the unexpected 
(unusual weather patterns, wildfires, 100-year floods, etc.) also built into the rates.  This 
is difficult to do while maintaining competitive rates. 

The rates should encourage loss control.  An appropriate risk categorization process will 
reduce claim frequency and/or severity.  Such process not only allows that insurer to 
lower rates but to provide a service to society by reducing accidents, injuries, and 
property damage. 

Rates must satisfy rate regulators.  Almost all rates must be filed with and approved by 
state insurance department or other agencies.  The basic requirement of the rate regulators 
is that rates must be adequate, not excessive, and not unfairly discriminatory.   

 

(b)  

 

 

2017

19 19 19 19
24 24 24 24Weighted Premium = 1.10 1 1.031337

2 2

(1.10)(1.08)(0.96)Current Rate Earned Premium = (10,000) 11,058.
1.031337

P P P

         
                  + − = 

    
        

  = 
 

27

 

            2017                                          2018                                             2019 

                                                                                                                    

                                    P                                             1.10P                                             (1.1)(1.08)P                             

                                                                                                                                                                       

                                                                   
 
                   5/24                                                               7/12                                                    10/12   

                                                                                                                                        (1.10)(1.08)(0.96)P  
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2018

5 5 5 5
24 24 12 12Weighted Premium =  (1.10)(1.08)

2 2

5 5 5 5
24 24 12 12                                    1

2 2

P P

        
                +
   
      

        
               + − −
  
     

1.10 1.105469

(1.10)(1.08)(0.96)Current Rate Earned Premium = (12,000) 12,380.05
1.105469

P P

 
   = 

 
  

  = 
 

 

 

2019

7 7 2 2
12 12 12 12Weighted Premium = (1.10) (1.10)(1.08)(0.96)

2 2

7 7 2 2
12 12 12 12                                        1

2

P P

        
                +
   
      

     
          + − −
 
  

(1.10)(1.08) 1.172368
2

(1.10)(1.08)(0.96)Current Rate Earned Premium = (8000) 7782.40
1.172368

P

  
       = 

  
    

  = 
 

 

(c) See the proof on Page 127 and 128 of Brown and Lennox. 

(d)  
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We need to calculate the expected loss for each Type which = ( ) ( ) ( )
Safe (0.04)(3000) 120
Not So Safe (0.10)(4000) 400
Reckless (0.25)(5000) 1250
Differential for Safe 1.00 since it is the ba

E S E N E S=
==> =

==> =
==> =

= se type
400Differential for Not So Safe 3.33333
120

1250Differential for Reckless 10.41666
120

= =

= =

  

 
(e)  

0.63Indicated Differential for Not So Safe = (3.33333) 3.50000
0.60

0.51Indicated Differential for Class C = (10.41666) 8.85416
0.60

  = 
 

  = 
 

 

  



  Page 7 

Question 3  
 

(a) The earned part of the premium paid in January is 1,600 
The earned part of the premium paid in March is 10 /12 1,800 1,500× =  

The earned part of the premium paid in May is 8 /12 1,200 800× =  

The earned part of the premium paid in July is 6 /12 1,200 600× =  

The total earned premium paid in 2021 is 4,500 

The premium paid in 2020 and earned in 2021 is 1,300  

The total earned premium in 2021 is 5,800 

Expected total losses are 5,800 4,6400.80× =  

Reserve = Expected total losses  Claims Already Paid 4,640 2,500 2,140− = − =  

 
(b)   

1

2

1500 1750 1900 2200 2900 1.50735
1000 1100 1200 1500 2000

1700 1775 2200 2500 1.11224
1500 1750

ˆ

1900 22 0
ˆ

0

f

f

+ + + +
= =

+ + + +

+ + +
= =

+ + +

 

3

4

5

1800 1825 2350 1.05286
1700 1775 2200

1850 1870 1.02621
1800 1825

1875 1.01351

ˆ

185

ˆ

0
ˆ

f

f

f

+ +
= =

+ +

+
= =

+

= =

 

 

AY 0 1 2 3 4 5 OCR 

16 1,000 1,500 1,700 1,800 1,850 1,875  

17 1,100 1,750 1,775 1,825 1,870 1,895.3 25.3 

18 1,200 1,900 2,200 2,350  2,444.2 94.2 

19 1,500 2,200 2,500   2,737.7 237.6 
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20 2,000 2,900    3,532.1 632.1 

21 2,500     4,589.8 2089.8 

 

The total OCR is 3,079.0 

The total sum paid in 2021 is : 

2,500 (2,900 2,000) (2,500 2,200)
                        (2,350 2,200) (1,870 1,825)
                                                           (1,875 1,850) 3,920

+ − + −
+ − + −

+ − =
 

(c)  The BF estimate of projected 2021 AY claims is   

 

2021,5 0 2021,5 0 2021

0
0 1 4

2021,5

2021

2021,5

ˆ (1 )
1 0.54469

ˆ  is the Chain Ladder estimated projected claims 4589.8
 is the LR estimated projected claims = 4640.0

4,612.7 OCR for AY 

ˆ ˆ

ˆ
ˆ ˆ ˆ

C C

C

f f f

C

β β µ

β

µ

+ −

= =

=

⇒ =

×

⇒

=

×







2021 4,612.7 2500 2112.7= − =

 

(d) BF Advantage – much less reliance on a single data point in the most recent AY 
BF Disadvantage – relies on subjective estimate of loss ratio (and adequacy of 
premiums). 
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Question 4  
 

Type propn λ Severity [ ]E X αθ=  2[ ]Var X αθ=  

S 0.5 0.04 3, 1000α θ= =  3000 2(3)(1000) 3,000,000=  

NSS 0.3 0.10 4, 1000α θ= =  4000 2(4)(1000) 4,000,000=  

R 0.2 0.25 5, 1000α θ= =  5000 2(5)(1000) 5,000,000=  

 

(a) We can calculate the probability of a claim arising from a random policyholder as:  

Pr( ) Pr( ) (0.5)(0.04) 0.02
Pr( ) Pr( ) (0.3)(0.10) 0.03
Pr( ) Pr( ) (0.2)(0.25) 0.05

0.02 0.03 0.05 0.10

S claim
NSS claim
R claim

Total

= =
= =

= =
= + + =

 

Given that a claim arises, we have 

     
Pr( | ) 0.02 / 0.1 0.2
Pr( | ) 0.03 / 0.10 0.3
Pr( | ) 0.05 / 0.10 0.5

S Claim
NSS Claim
R Claim

= =
= =

= =
 

So [ ] (0.2)(3,000,000) (0.3)(4,000,000) (0.5)(5,000,000) 4,300,000E Var X  = + + =   

(b) 

[ ]

2 2 2 2

2

[ ] (0.2)(3000) (0.3)(4000) (0.5)(5000) 4300
[ ] (0.2)(3000) (0.3)(4000) (0.5)(5000) 19,100,000

19,100,000 (4300) 610,000

E X
E X

Var E X

= + + =

= + + =

 ⇒ = − = 

 

(c) [ ] 4,300,000 7.04918
[ ] 610,000

1 0.12424
1 7.04918

 (0.12424)(20,000) (1 0.12424)(4300) 6250.51

E VarK
V E

NZ
N K

Estimated Severity

= = =

⇒ = = =
+ +

= + − =
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(d) ( )2[ ] [ ] [ ]  and  [ ] [ ] [ ] [ ] [ ]E S E N E X Var S E N Var X E X Var N= = +   

Type of Driver E(S) Var(S) 

Safe (0.04) (3000)=120 (0.04)(3,000,000)+(3000)2(0.04)=480,000 

Not So Safe (0.1) (4000) =400 (0.1)(4,000,000)+(4000)2(0.1)=2,000,000 

Reckless (0.25) (5000) =1250 (0.25)(5,000,000)+(5000)2(0.25)=7,500,000 

(0.5)(480,000) (0.3)(2,000,000) (0.2)(7,500,000) 2,340,000EPV = + + =   
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(e) ( )2[ ] [ ] [ ]  and  [ ] [ ] [ ] [ ] [ ]E S E N E X Var S E N Var X E X Var N= = +   

Type of Driver E(S) Var(S) 

Safe (0.04)(3000)=120 (0.04)(3,000,000)+(3000)2(0.04)=480,000 

Not So Safe (0.1)(4000)=400 (0.1)(4,000,000)+(4000)2(0.1)=2,000,000 

Reckless (0.25)(5000)=1250 (0.25)(5,000,000)+(5000)2(0.25)=7,500,000 

(0.5)(480,000) (0.3)(2,000,000) (0.2)(7,500,000) 2,340,000EPV = + + =   
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Question 5  
 

(a) 20
20 0.95 20 0.95 0.95

20

Pr[ ( )] 1 Pr[ ( )] 1 ( )

1 (0.95) 1 0.35849 0.64151

( )XM Q X M Q X F Q X> = − ≤ = −

= − = − =

 

(b) ( )

( ) ( )

( )
( )

( ) ( )

( )

1( ) 1 Pr ( ) 1

1

log ( )

[ ] n

n n

Q X
n

Q X Q X

n

n X Q X e
n

e n e
n

n Q X

α

α α

α

α

α −

−

= − = ≤ = −

⇒ = ⇒ =

⇒ =

 

(c)  ( ) ( )

( ) ( ) ( )

( )

( ) [ | ( )] as  is continuous
( ) [ ( ) | ( )]
( ) [ ]

log 1

ES E

from the memoryless property

n n

n n n

n

X X X Q X X
Q X E X Q X X Q X
Q X E X

n

α α

α α α

α

= >

= + − >

= +

= +

 

(d) The exponential distribution is in the MDA of the Gumbel EV distribution means that  there 

exist deterministic functions nc  and nd , such that as n →∞ , the distribution of n n

n

M d
c
−

converges to the standard Gumbel distribution. 

Let ( )H x  denote the d.f. of the Gumbel distribution. 

              [ ]

Pr ( ) 0.5772

log 0.5772
[ ] 0.5772 log

n n n n

n n

n

n

M d M dx H x E
c c

E M n
E M n

− −   ≤ ≈ ⇒ ≈      
⇒ − ≈

⇒ ≈ +

 

So we have  

( ) ( ) ( )( ) ( )log [ ] log 0.5772 log 1EE Sn n nQ n M n nα α= < = + < = +  

(e) Suppose we have a sample of 20N values of Xi, split into N blocks of 20, where N is a large 
number. 

We would approximate E[M20] by taking the average of the N block maxima.  As N →∞  
this approximation will converge to the true value. 

We would approximate ES0.95 by taking the average of the largest N values. As N →∞  this 
approximation will converge to the true value.  This cannot be smaller than the E[M20] 
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estimate, (as the boundary case is that the N largest values are also block maxima) but it 
could be bigger, if one or more blocks have several values that are larger than the smallest 
block maximum.  Hence, ES0.95 must be greater than E[M20], unless both are equal to the 
maximum possible value of X. 

Also, for each block, the estimated 95% quantile of X lies between the 19th and 20th values 
(the smoothed empirical estimate would be the 19.95th value, estimated by linear 
interpolation).  That means that the expected value of the 95% quantile is less than or equal 
to the expected value of the block maximum, with a block size of 20, i.e. that  E[M20], must 
be greater than Q0.95, unless both are equal to the maximum possible value of X. 
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Question 6  
 

(a)  

 

[ ]

( )

( )( )

( )

1

0

0
1

00

1

0

1

min( , ) ( ) (1 (

1

1

1 1

))

1

M

M

M

M

M

E

y

Y M y f y dy M F M

y dy M

y M
y

M

My

dy
y M

M M
M

M

αα

α

α α α

α αα

α

α α

α α

λ
λλ

λ λ λ
λ λ λ

λ λ λ
λ λα λ

λ λ
α α

αλ

λ λ

+

−

− −

= + −

 = +  
 

     = −      
    

    = + −    
     

  = −  

++

 
+ + 

+ + +  

− +
+ +−

   

+

− −  +

∫

∫

∫

1

1
1

M

αλ λ
α λ

−
 










= − 

− + 



 

 

(b)   

( )

( ) ( )

( ) ( )

( )

3
197 97

97

1

1
97

1
7

1

9

9

7

(

l

, )

, ) 97 log 100 log ( 1) log 3 log

97 100log log 3log

100 1 3(

g (

)

o

1

i

i
i

i
i

ii

i

x
M

x M

l x M

l
x M

L

l L

α
αα λα λ α λ λ

λ

α λ α α λ α λ α λ

λ λ λ
α α

α αα
λ λ λ λ

− −

=

=

=

=

= +
+

= + − + +

+

  
   

− +

∂
= + − + −

∂
∂

= − + −
∂ + +



=

∑

∑

∏

∑

 

Set equal to zero: 

( ) ( )

( )

97

1
97

1

97 ˆ ˆ ˆ0 100log log 3log
ˆ

ˆ ˆ100 1 3ˆ0 ( 1)ˆ ˆˆ

i
i

i i

x M

Mx

λ λ λ
α

α αα
λ λλ

=

=

= + − + − +

= − + −
++

∑

∑
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(c)  Substituting the given values gives ˆ 3.3836α = . 
 

(d) The estimated covariance matrix is found by taking second partial derivatives of the log-
likelihood, multiply by -1, substitute the unknown parameters with the MLEs, and invert, 
as follows: 

  

        

( ) ( )

( )

( ) ( )

( )

97

1
97

1

2

2 2 2

2 97
7

2 2 2 2
1

2 97

1

97 100log log 3log

100 1 3( 1)

97 97 8.4725
ˆ

100 1 3( 1) 5.483 10

100 1 3 0.002113

8.4725 0.0

i
i

ii

i i

ii

l x M

l
x M

l

l
x M

l
x M

V

λ λ λ
α α

α αα
λ λ λ λ

α α α
α αα

λ λ λ λ

λ α λ λ λ

=

=

−

=

=

∂
= + − + − +

∂
∂

= − + −
∂ + +

∂
= − ≈ − = −

∂
∂

= − + + + ≈ − ×
∂ + +

∂
= − − ≈

∂ ∂ + +

−
⇒ ≈

∑

∑

∑

∑
1 1

7 7

7

02113 8.4725 0.002113

0.002113 5.483 10 0.002113 5.483 10

3.034 11,693

11,693 4.689 10

− −

− −

−   
   
− × − ×   

 
≈

=

 
× 
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Question 7  
 

(a) From the formula sheet 

 

( ) ( )

( ) ( )

2 2

2 2

2 2

2
/2

2

2

0

0

/2

2
/

log

log

log)

Also, w

(

e 

1 ( )

( ) 1 ( ) 1 ( )

( )

ah ve

k k k k

k k k k k

d
k k

k

d

k

E X x F x

x f x dx d F d F d

x f x dx

f x dx E

x ke x

d ke d

d ke

x

µ σ

µ σ

µ σ

µ σ
σ

µ σ
σ

µ σ
σ

+

+

+

  − − Φ +  
   

  − − Φ +  
   

  − − 

 ∧ = − 

⇒ + − = −

⇒ Φ=   
   

=

∫

∫

2 2

2 2

/2

0

2
/2( log) 1

k k k

k

d

k k

X

x

e

d kef x dx

µ σ

µ σ µ σ
σ

∞
+

+
∞

=

  − − −Φ  
 

  

⇒ =
 

∫

∫

 

(b)   The expected number of claims involving the reinsurer is 

( ) log3000 61 (3000) 50 1 2.53
1.22475

Fλ  −  − = −Φ =    
 

The expected value of an individual reinsurer claim is 

 

( ) ( )

2
2

/2 log 854.06 0.660361 3000
0.05069log1

2722.4

1 1( ) ( )
( ) ( )

1

d d

x d f x dx x f x dx d
S d S

d d
d

d

eµ σ µ σ
σµ

σ

+

∞ ∞

  − − × −Φ − = −

− = −

=
 
 
 

Φ
 −     −  

 

=

∫ ∫

 

Let S denote the aggregate claim cost before reinsurance and let S* denote the reinsurer’s aggregate 
claims cost. Let Y and Y* denote the gross and reinsurer’s claim severity random variables, 
respectively. 

Then the aggregate cost of claims paid by the reinsurer is

[ ] [ ]* ( ) * 2.5345 2722.38 6,899.98E S S d E Yλ= = × = . 

The aggregate cost of claims paid before reinsurance is [ ] [ ] 50 854.06 42,702.94E S E Yλ= = × = . 

Hence, the average cost of claims to the direct insurer, net of reinsurance, is [ ]* 35,803.0E S S− =  
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(c)  

[ ] ( ) ( )

( ) ( )

( )2

2 2

2 2 2 2

2
2 2 2

*

( ) ( ) 2 ( )

1

51 ,

( ) * 2.5345 *

1 1 1*
( ) ( ) ( )

1 log 2 2 2722

,037,050

8

34,334,283 9,000

. 3000
)

,000 2

(

5

d d d

V S d E Y E Y

E Y x d x x
S d S d S d

de d d
S d

ar S

f x dx f x dx d f x dx d

µ σ

λ

µ σ
σ

∞ ∞ ∞

+

   = ×   

  = − 

  − −
= Φ −

=

= − +

 
−

=

+ +     


 

− + =

∫ ∫ ∫

[ ]

2

2

702,767 5,069.79
* 8,071.2Var S

=

⇒ =  
 

(d) Now we have 

                  

( )

[ ] [ ]
1 1

)   i.e.  6899.94 (1 )42,702.94
0.8384

* 1 ; ; * *

So * (1

N N

E S

Y Y S Y S Y

E S

α

α α
α

= −

⇒ =

= − = =

= −

∑ ∑
 

(e) The variance of reinsurer claims is

[ ] [ ] [ ] ( )
[ ] [ ]

[ ]

2

22 2

2 2 2

* (1 (1 1

* (1

3,269,017

[ ] 12,784.7
* 2065.8

) )

)

S E Y

SD S

Var S Var Var S

SD S

SD S

E Y e

SD S

µ σ

α α α λ

α
+

= − = − = −

⇒ = −

=

⇒

⇒

  

=

 
=

=  

(f) The two reinsurance contracts have the same expected cost, but the standard deviation of 
costs under the excess loss policy is significantly larger than under the proportional 
reinsurance contract. As the reinsurance premium will reflect risk, we would expect a 
higher premium loading for the excess loss policy than for the proportional policy. 
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Question 8  
 

(a) The hazard rate is ( )xλ , say, where 

                         
( )2

2

2 2

2

2

( ) log ( )

log ( ) 2 log 1

2 1 2 1log ( ) 2
1 1

2 1( )
1

dx S x
dx

S x x x x

d x xS x
dx x x x x

xx
x x

λ

λ

= −

= − + + +

+ − −
⇒ = − + =

+ + + +
+

⇒ =
+ +

 

(b) The hazard rate is increasing for all 1x > . For the exponential distribution, the hazard rate 
is constant, and the MEL is flat. This indicates that the given distribution is lighter tailed 
than the exponential. 

(c)  

[ ]

( ) ( )

( )

( )

2 2 2 2 2

2
2 2 2

2 2 2
2

2
2

(

1 1) 1

1

1( ) | ( )
( )

1 1( ) ( 2
2

) (2 1)
2

1) 2 1
2 4 4

1) 2 1
2

1

2

1
4 2

(

(

x x x

d
x x

d

d d x

d
d

d

dd d d

d

x x

ed x

e e ed d

e e

e d E X d X d S x dx
S d

S x dx e x dx e x e x dx

d e e dx

d

d

d d

∞

−

∞∞ ∞ ∞

∞

− − −

∞−
−

∞− − −

−

+ + + + +

 + + + + +  

 
+

= − > =

+

 = = − +  

= −

=


=

+ + + − 


+ + + +

∫

∫ ∫ ∫

∫

( ) ( )

2 2

2
2 2 21

2

4 4

2 4 4 1
4

d d

d
d

e

e d d e d d

− −

−
−

+

+= + = + +

 

 
( )
( )

2 21 21
2 2

22 2

1 1
11

( )
d

d

e d d d d
d de d d

e d
−

−
⇒

+ + + +
+ ++

= =
+

 

(d) As 1
2, ( )d e d→∞ → , and the gradient of the MEL function tends to 0. This indicates that 

the distribution is in the MDA of the Gumbel GEV distribution, which means that 0ξ = . 
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Question 9  
 

(a) The assumptions are  
1.   ( )|  independent of ij i iE X jθ µ θ  =   

2.  ( ), ,|  independent of i j j i j iVar X v jmθ θ×  =  

In this case: 

                 ( ) ( )
,

, , ,
,1

, ,
,

1 1| |
i j

ij i i j l i i j i j l i i

m

jli j i

E X E Y m E Y
m m

θ θ θ µ θ
=

 
   = = =    

  
∑        

               
( ) ( )

( )

,

, , , , ,
, ,1

,

2

,

,

1 1| |

|

i j
i

ij i i j l i i j i j l i
i j i j

i j i i j i

m

l i j

V
v

V
m

m

ar X ar Y

r

m Var Y
m m

vVa X

θ
θ θ θ

θ θ

=

 




=

⇒ 





   = =   
 

=

∑
 

(b)  

(i) 
ˆ
ˆ

i
i v

i a

Z m
m

=
+

, where ,
1

n

i i j
j

m m
=

=∑ , and â  and v̂  are estimates of 

( ) ( )Var  and Ei ivµ θ θ        respectively. 

(ii) The parameter a is a measure of the uncertainty in the estimation of ( )iEµ µ θ=    . 

Greater uncertainty in the prior mean estimate indicates that it should have less 
weight, and that the data, represented by iX , should have more weight. As iZ  is the 
weight given to the data, a larger value of a leads to a larger value of Zi. 

(iii) The parameter v is a measure of the variability within the data from the individual 
risk. More variability means that there is more uncertainty associates with the 
accuracy of iX  as an estimate of the risk premium. That indicates that we should put 

more weight on the prior mean, and less weight on iX , which is achieved through a 
smaller value for Zi. 

(iv) The mi parameter is a measure of the volume of data available in the estimation of iX . 
If we have more data, then the estimate is more reliable, so we expect a larger value of 
Zi. 

 
(c) (i) From (a) we have ( )|ij i iE X θ µ θ  =   
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( )1

1

|
|

ij ij i

i i i

n

j

j
ij

nX
m E X

E
m

θ
θ µ θ=

=

⇒
  

  = = 

∑

∑
 

   [ ]
[ ]

[ ]1

1

( )
ˆ ( )

r

i
r

i

i i

i

i

Z E
E E

Z

µ θ
µ µ θ µ=

=

⇒ = = =
∑

∑
 

(ii) Using a weighted average of unbiased estimates, where the weights are 
approximately equal to the variance of each estimate generates (approximately) 
the minimum variance unbiased estimator, compared with any other weighted 
average. 
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Question 10  
 

(a)  

1

2

1 1

1

log

log ( ) 2 2ˆ.   Set equal 

( ) log ( ) 2 l

ot  zero for  

og

 

i
n n

x
i i i

i i

n

i
i

n

i

L

x

xLx e x

L n x

nλλ λ λ λ λ

λ λ
λ λ

=

−

= =

=

− +

∂
⇒ = − =

=

∂

= ⇒∏ ∑ ∑

∑
 

(b)  

( )

( )
( )

1
22 2

2 2 2 (1 2 ) 2

0 0

2
2(1 2 )

2
0

as the X  are i.i .

( )

(1 2 )
(

.d

1 2 )

n
ii

nt xnXt Xt
Y

i

Xt xt x x t x

x t x

e

M

xe dx xe dx

xe d

t E e E e E e

E e e

e t
t

x

λλ λ

λ λ λ λ λ

λ λ

λ λ

λ λ
λ

=

∞ ∞
− − − −

∞
− − −

 ∑   = = =      

  = 

= −
−

=∫ ∫

∫

 

If (1-2t)>0, the integrand is the pdf of the original distribution, with a new λ parameter, 
so the integral is equal to 1, giving  

2 2 2 2(1 2 ) (1 2 )Xt nXt nE e t E e tλ λ− −   = − = −   ⇒  

Which is the MGF of the chi-square distribution, with ν = 4n degrees of freedom. 
 

(c) The Information function is 
2

2 2 2
log 2 2L n nE E
λ λ λ

 ∂  − = − − =   ∂   
. 

The asymptotic variance of λ̂  is 
12 2

2
log

2
LE

n
λ

λ

−
  ∂
− =   ∂  

. 

(d) (i) A 95% confidence interval for Y is ( )0.025 0.975( ), ( )Y Q YQ , where Qα is the α-quantile 

of the chi-square distribution with 4n = 40 degrees of freedom. 

Using CHISQ.INV in Excel, we find the CI for 2Y Xnλ=  is (24.43, 59.34).  Divide by 
2nx gives a 95% confidence interval for λ̂  of  (0.00341, 0.00829) 
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(ii)  The MLE is asymptotically normally distributed. We have 
2ˆ 0.005587.
x

λ = =  The variance 

is approximately 
2

6 2
ˆ

0.00121.5605 10
2

5
n
λ − == × . So the approximate 95% CI is 

( )0.005587 1.96 0.00125 0.00314,0.00804 .± × =  

(e) The confidence intervals are quite close. The MLE CI is an asymptotic result, and we 
would expect less accuracy applying this to a sample of only 10 values.  The chi-square 
confidence interval is an exact interval for Y, based on the actual sample size rather than 
on asymptotic results, so we would expect it to be more accurate. 
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Question 11  
 

(a) (i) Let ki  denote the number of claims from the ith policy.  The likelihood function is 
1

1 1
1

1 1

) log log log

log ˆ

1625 0 307 1 58 2 9 3 1 4ˆ 0.2

(

27.
00

!
!

2 0

n
ii

k n n n

i in
i iii

n n

i i
i i

L e L k n k
k

k k
L n k

n

λλλ λ λ

λ
λ λ

λ

= −

= =
=

= =

∑
= ⇒ = − −

∂
⇒ = − ⇒ = =

∂
× + × + × + × + ×

⇒ = =

∑ ∑
∏

∑ ∑
 

 
 
(ii) Using the Poisson probability function with the estimated value of λ, we have the 
following estimated frequency: 

Number of claims (per 
policyholder) 

0 1 2 3 4 5+ 

(Expected) Number of 
policyholders 

1593.842 361.802 41.065 3.107 0.176 0.008 

 
(iii) The chi-square test statistic for this model is 

2 2 2 2
2 (1625 1593.842) (307 361.802) (58 41.065) (10 3.291) 29.571

1593.842 361.802 41.065 3.291
χ − − − −

= + + + =  

 
(b) (i) The likelihood function is given by 

( ) 1

1
) )

log . Set equal to 0 for
1

1ˆ= 0.8150

( 1 log log log(1

1

i
n

in
i

n
k

i
L

k

L n

n k

k

L n

ππ π π π

π π π

π

=

=

=

∂
⇒

 ∑− ⇒ = + − 


= −
∂ −

=
+


∑

 

 
(ii) Using the estimated probability, we produce the following estimated frequency: 

Number of claims (per 
policyholder) 

0 1 2 3 4 5+ 

(Expected) Number of 
policyholders 

1630.000 301.550 55.787 10.321 1.909 0.433 
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(iii) The chi-square test statistic for this model is 0.762. 
 
 

(c) Since each model has one parameter to estimate, the corresponding degrees of freedom in 
the chi-square test are the same. Hence, because the chi-square test statistic based on the 
second model is much smaller, it will result in a much higher p-value, and is therefore a 
far better model. 
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Question 12  
 

(a) The following procedure would be typical for insurance loss data model selection: 
(i) Conduct preliminary investigation, such as histogram, summary statistics, of raw data; 
(ii) Construct empirical distributions (eg use Kaplan-Meier for truncated/censored data); 
(iii) Construct pictures such as q-q or p-p plots; 
(iv) Conduct hypothesis tests: Kolmogorov-Smirnoff test, chi-square goodness-of-fit test; 
(v) Calculate other criterion statistics such as SBC/BIC and AIC. 
In addition, some other considerations to make include: (i) keep it simple if at all 
possible, and (ii) restrict the universe of potential models. 
 

(b) The standard errors of the parameter estimates provide measure of the degree of accuracy 
of parameter estimates. Generally, it is preferred to have smaller standard errors. They 
can also be used for confidence intervals, the likely range of values of the parameter 
values. Standard errors can be evaluated based on the second derivative of the optimal 
value of the loglikelihood function, called the information matrix or the Hessian matrix. 
 

(c) To test the null , one can approximate the test statistic: 

 

and if this is more than 2 (in absolute value, assuming two-sided test), then one can safely 
reject the null hypothesis. In this case, the test statistic is quite small so that we will not 
be able to reject the null hypothesis that the claims data may come from a Pareto. 
 

(d) There are several hypothesis tests that can be considered to examine the goodness-of-fit 
of the data to the model being investigated. However, these tests generally fail to account 
for the number of parameters and the sample size. Alternatively, you may use the SBC 
statistic defined by  where  is the log of the likelihood at the 
maximum,  is the number of parameters estimated, and  is the sample size. Generally 
we prefer a model with a larger SBC score. For the Pareto model, we have 

, 
while for the Burr XII model, we have 

. 
Because the Pareto yields a larger SBC score, we would prefer this model over the Burr 
model. 
 

(e) All the tests and criterion used indicate that the Pareto model is better than the Burr 
model for this data. The Pareto, with one fewer parameters, is also a more parsimonious 
model.  
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Question 13  
 

(a) We are given that  so that 

. 

 
(b) We can maximize the loglikelihood given by 

. 
Setting the derivative to zero 

, 

we have 

. 

 
(c) Use the asymptotic results of maximum likelihood estimates with standard error estimated 

using the information quantity. The 95% confidence interval can then be evaluated as 
. 

 
(d) Since the average time to a claim is , then its MLE is 

. 

 
(e) Since  is a function of , i.e. , one can use the Delta method to estimate its 

variance or standard estimate: 
. 
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Question 14  
 

(a) X1 is a mixture of two exponential distributions, i.e. 

[ ] [ ] [ ]
1 1 2 1 2

1 21

(1 ) ~ exp(1000) and  ~ exp(500)
E E (1 )E (1000) (1 )500
Set equal to 800 0.6

  where  X Y YY Y
X Y Y
β β

β β β β
β

= + −

= + − = + −

⇒ =

 

 
(b)    

[ ] ( )

[ ]

[ ] ( ) ( )

1 2

1 2

200

200 200
1000 50

1 1

0

1

1

1

200 200 ( ) (1 ) ( )
200

200 (200) (1 ) (200)   

      

9

          where ( ) 1 ( ) is the survival functio

1 ( 200)
Pr

Pr

Pr 0.

 

6 0

n of .

420 .0 0 4 .

Y Y

Y Y

Y Y

E X f x f x dx

S S

S x F x

e

X

Y

X x
X

X e

β β

β β

∞

− −

>

  = − − > + −
>

+ −

=

⇒ => =

−

=

+

∫

[ ] [ ]
200

1 1

124 0.26813 0.75934

Also, from the memoryless property of the exponential distribution:

( 200) Pr

0.49124(1000) 0.26813(500) 823.46.

( ) 200  

200 2
5

0
0.7 934

0

Yf x d

X

x Y

E X

x E Y
∞

+ =

− =

+
  = = 

> ×

⇒ − >

∫

 

(c) Let Q denote the 90% VaR of X1. Then 

       [ ] [ ]1 1 2

/1000 /500

/1000 2 /500

2

Pr 0.6Pr 0.4Pr[

0.4 0.1.

Let ,  so that . Then

0.6 0.6
0.1514  (ignore 0 solutio

.

] 0.1

.

0.6

4(0
)

.4
n

0 8
188

.

8

)(0 1)

Q Q

Q Q

X QY Y

e

Z Z e

Q

e

Z Z

Q

Q

e− −

− −

= +

+ =

=

− ±
= = <

⇒

>

=

=

> > =

⇒

+

 

(d)   
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( ) ( ) ( )1

2

2

2

0.002

1

1 0.5 1

3

(0.002) 500
( )      for constants  and .

500
(

.

)

(500) 1 (500)0.6 1 0.4 1 0.48893

      

0

1 0.4

      0.77348

2000(500)
2 0

8893 0.51107
5 0

0

x

X

X X

X

x
f

k e
x k c

c x
x

F k e F e

k

S c c

e

α

α

αθ
θ

−

+

− − −

 ≤
= 

< +

= − = − + − =

⇒ =

 =  
 

<

= − = ⇒ = 99818

 

 
(e) Let Q denote the 90% VaR of X2. Then 

[ ]
3

2
2000Pr 0.1 0.1

2000
               2306.3Q

QX c
Q

 
=> ⇒ = + 

⇒ =

 

(f) The tail of X1 will behave very similarly to the exp(1000) distribution.  The exponential 
distribution is thin tailed; it is in the MDA of the Gumbel distribution, and it has a constant 
hazard function. 
The tail of X2 will behave very similarly to the Pareto(3,2000) distribution. This is much 
fatter tailed. It lies in the MDA of the Frechet distribution, which is the fattest tailed of the 
EV distributions.  It has decreasing hazard function.  
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Question 15  
 

(a)  

[ ] [ ]

[ ] ( )

[ ]

0

1 /

0
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1 ( )1 ( )
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 -- this will just make the derivation 
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α
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In the penultimate line, we multiply and divide by ( )y ατ +  so that the integrand is the pdf of a 
gamma distribution, which must integrate to 1.0. 

(b)  Let N denote the number of loss events, and N* the number of payments. 

[ ]

[ ]

[ ] [ ]

*

4

*

*

1 2

0 0

0 0

500Let  = Pr  =  
600

1   if  
Let 

The probability generating function of  is

( ) Pr Pr

          = Pr Pr
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=
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= 
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 
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∑ ∑ 
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IN n P z P P z

=

∞

= = =∑

 

as the PGF of a sum of independent random variables is the product of their PGFs. 
 The Ij indicator variables are Binomial(1, q) distributed, so   

 
( )

( )( )
( )

*

( ) (1 ( 1)

( ) 1 ( 1)

( ) 1 1 ( 1

               =

) 1

1 ( 1)

I

r
N

r

N

r

P z q z

z zP

z q

q

P z

z

β

β

β

−

−

−

= + −

= − −

= −

− −

⇒ + − −
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Which shows that the number of payments also has a negative binomial distribution, with 
the same r parameter, and with * 0.72338.qβ β= =  

(c) From the distribution function, we know that Y has a Pareto distribution with parameters 
4, 500.α θ= =   

[ ] [ ]
[ ]

4

100 | 100
Pr 100

Pr Pr 100 | 100
Pr 100

100              

 

     =

600                  =
60

10

0

0

P

P

Y Y
Y

Y
y

Y y Y y Y

y

y

Y
α αθ θ

θ θ

= − >

> +
 > = > + > =  >

  + 
   +






 +

 



+

 

(d) Let K denote the discretized random variable associated with PY , using a step size of 50, 
so that [ ]Pr K k=  is an approximation for the probability that the claim size is 50k.  Let  

jf  denote the probability function for K, then 

[ ]

[ ]

[ ]

4

4

0

4

1

4 4

2

600Pr 0 Pr 1 0.15065
625

600 600Pr 1 Pr 25 0.22505
625 675

600 600Pr 2 Pr 75 0.15521

25

75

675
125

725

P

P

P

f K Y

f K Y

f K Y

  = = = = − =    

    = = < = − =        

    = = < =

≤

= ≤

= ≤ − =       

  

 
The number of payments has a negative binomial distribution with parameters 

( )( )

( ) ( )

*

*

* *

* *

2*
0 0 0

1 0
1

0

1 1

2

2, 0.72338

0.419745; 0.419745
1 1

Let  denote the aggregate payment probability function 

1

(in unit .

( 1)

( ) 1 1

( .

s of 50)

0.38369

) 0 07738

2
2 2

k

N

r

P f f

a b f g
af
b ba f g a f

r

g

a b

g

g

g

β

β β
β β

β
−

−

= = − −

+

= =

= = = =

= =
−

+ + +
=

+ +

=

[ ]

2 0

0
0.06507

1
Pr 100 0.38369 0.07738 0.06507 0.52614.

g

af
S

=
−

⇒ ≤ ≈ + + =
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Question 16  
 

(a) Given that the aggregate payment amounts are multiples of 2, the probability function for 
𝑆𝑆1 can be written as Pr(𝑆𝑆1 = 2𝑘𝑘) , 𝑘𝑘 = 0,1,2, … 

 
Using the convolution formula, we have 

Pr(𝑆𝑆1 = 2𝑘𝑘) = �𝑝𝑝𝑛𝑛 ∙ 𝑓𝑓𝑋𝑋∗𝑛𝑛(2𝑘𝑘)
∞

𝑛𝑛=0

. 

Note that 𝑛𝑛 convolutions of Bernoulli 𝑋𝑋1 (i.e., sum of 𝑛𝑛 i.i.d. Bernoulli random variables) is a 
Binomial distribution with parameters 𝑛𝑛 and 𝑝𝑝 = 0.7. Therefore,  

Pr(𝑆𝑆1 = 2𝑘𝑘) = �𝑝𝑝𝑛𝑛 ∙ 𝑓𝑓𝑋𝑋∗𝑛𝑛(2𝑘𝑘)
∞

𝑛𝑛=0

= �
2𝑛𝑛

𝑛𝑛! 𝑒𝑒
−2 ∙ �𝑛𝑛𝑘𝑘� 0.7𝑘𝑘0.3𝑛𝑛−𝑘𝑘

∞

𝑛𝑛=𝑘𝑘

. 

The second equation starts with 𝑛𝑛 = 𝑘𝑘 because there should be at least 𝑘𝑘 number of claims to 
achieve an aggregate payment of 2𝑘𝑘. 

 
(b) Let 𝑀𝑀𝑗𝑗(𝑡𝑡) (𝑗𝑗 = 1,2) be the moment generating function (mgf) of the severity for 𝑆𝑆1 and 
𝑆𝑆2, respectively: 𝑀𝑀1(𝑡𝑡) = 0.3 + 0.7𝑒𝑒2𝑡𝑡 and  𝑀𝑀2(𝑡𝑡) = 0.6 + 0.4𝑒𝑒4𝑡𝑡.  

 
Then, the mgf for 𝑆𝑆𝑗𝑗 is 

𝑀𝑀𝑆𝑆𝑗𝑗(𝑡𝑡) = 𝑃𝑃𝑁𝑁𝑗𝑗�𝑀𝑀𝑗𝑗(𝑡𝑡)� = exp�𝜆𝜆𝑗𝑗(𝑀𝑀𝑗𝑗(𝑡𝑡) − 1)� 
and the mgf for 𝑆𝑆 is given by 

𝑀𝑀𝑆𝑆(𝑡𝑡) = E[𝑒𝑒𝑡𝑡𝑡𝑡] = 𝑀𝑀𝑆𝑆1(𝑡𝑡) ∙ 𝑀𝑀𝑆𝑆2(𝑡𝑡) 
= exp�𝜆𝜆1𝑀𝑀1(𝑡𝑡) + 𝜆𝜆2𝑀𝑀2(𝑡𝑡) − (𝜆𝜆1 + 𝜆𝜆2)� 
= exp�𝜆𝜆(𝑀𝑀(𝑡𝑡)− 1)�, 

where 𝜆𝜆 = 𝜆𝜆1 + 𝜆𝜆2 = 3 and 𝑀𝑀(𝑡𝑡) = 2
3
𝑀𝑀1(𝑡𝑡) + 1

3
𝑀𝑀2(𝑡𝑡) = 0.4 + 1.4

3
𝑒𝑒2𝑡𝑡 + 0.4

3
𝑒𝑒4𝑡𝑡.  

 
Therefore, 𝑆𝑆 = 𝑆𝑆1 + 𝑆𝑆2 is also a compound Poisson process with 𝜆𝜆 = 3 and a secondary 

distribution on 0, 2, 4 with probability 0.4, 1.4/3 and 0.4/3, respectively. 
 
(c) Let 𝑔𝑔𝑘𝑘 = Pr (𝑆𝑆 = 2𝑘𝑘) be the probability that the total claim payment amount of both 

lines be 2𝑘𝑘, for 𝑘𝑘 = 0,1,2, … Also, denote the secondary distribution for 𝑆𝑆 as  𝑓𝑓𝑗𝑗 =
Pr(𝑋𝑋 = 2𝑗𝑗), for 𝑗𝑗 = 0,1,2.  

 
Then, 

𝑔𝑔0 = 𝑃𝑃𝑁𝑁(𝑓𝑓0) = exp�𝜆𝜆(𝑓𝑓0 − 1)� = exp�3(0.4− 1)� = 0.165299. 
 
For compound Poisson, the recursive formula is 
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𝑔𝑔𝑘𝑘 =
𝜆𝜆
𝑘𝑘�𝑗𝑗𝑓𝑓𝑗𝑗𝑔𝑔𝑘𝑘−𝑗𝑗

𝑘𝑘∧2

𝑗𝑗=1

,             𝑘𝑘 = 1,2, … 

where 𝑗𝑗 is capped at  𝑘𝑘 ∧ 2 because maximum severity is 4 (or 𝑗𝑗 be 2). Therefore, 

𝑔𝑔1 = 𝜆𝜆𝑓𝑓1𝑔𝑔0 = 3 ∙
1.4
3 ∙ 0.165299 = 0.231418, 

And 

𝑔𝑔2 = Pr(𝑆𝑆 = 4) =
𝜆𝜆
2

(𝑓𝑓1𝑔𝑔1 + 2𝑓𝑓2𝑔𝑔0) 

=
3
2 �

1.4
3 ∙ 0.231418 + 2 ∙

0.4
3 ∙ 0.165299� 

= 0.195053. 
 
(d) The net stop-loss reinsurance premium satisfies 
 

𝐸𝐸[(𝑆𝑆 − 𝑑𝑑)+] = 𝐸𝐸[𝑆𝑆]− 𝐸𝐸[𝑆𝑆 ∧ 𝑑𝑑]. 
 
We determine each item on the right side of the equation. First, 
 

𝐸𝐸[𝑆𝑆] = 𝐸𝐸[𝑁𝑁] ∙ 𝐸𝐸[𝑋𝑋] = 3 �0.4 ∙ 0 +
1.4
3 ∙ 2 +

0.4
3 ∙ 4� = 4.4. 

Second, 
𝐸𝐸[𝑆𝑆 ∧ 4] = 2 Pr(𝑆𝑆 = 2) + 4 Pr(𝑆𝑆 ≥ 4) 

= 2𝑔𝑔1 + 4(1− 𝑔𝑔0 − 𝑔𝑔1) 
= 2 ∙ 0.231418 + 4(1− 0.165299− 0.231418) = 2.875968. 

 
Finally, we have 

𝐸𝐸[(𝑆𝑆 − 4)+] = 𝐸𝐸[𝑆𝑆] − 𝐸𝐸[𝑆𝑆 ∧ 4] = 4.4− 2.875968 = 1.524. 
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Question 17  
 

(a)  

             

100 100

120 640 700 820 1220
1

480

500

5 0

(820) (1220)) (120) (640) (700) (1500)
(100) (100)

        

  

(

      

L f ff f f S
S S

e e e
e e

e

e e e
θ θ

θ θ θ θ θ
θ

θ

θ

θ θ θ θ θ

θ

− −

− − − − −

−

−

−

=

     
     =
     
     

=

 

(b)  

              

2

4800) log ( ) 5log

5 0

(

4800 4800ˆ 96
5

L

dl

l

d

θ θ θ
θ

θ
θ θ θ

= = − −⇒

⇒ = − + ⇒ = =
 

(c)                  
12

2
ˆ

2 3

2 2 3

[

[

ˆ]

ˆ5 9600 ˆ] 184,320ˆ9600 5
ˆ[ ] 429.3

V

d
V

d l
d

d l

SD

θ θ

θ
θ

θθ
θ θ θ θ

θ

−

=

 
≈ − 

 

= − ⇒ ≈ =
−

⇒ ≈

 

(d)           ( )

( )1000
1      from the formula sheet

         960(0.64713)=621.25

max ,1000

[ ]

Y X

E eY θθ
−

−

≈

=

=

 

(e)  

         

( ) ( )
( ) ( )( )

( ) ( )
( ) ( )

1000

2

1000 1000

2 2

(

   by the delta method

184,320 189,780 435.6

 80% CI is approximate

ˆ) 1 621.25

ˆ ˆ ˆ

1000 ˆ1

 

1.0147

ˆ 1.0

ly  621.25 1.28(435.6)
 

147

       

g e g

V g g

g e e g

V g

V

θ

θ θ

θ θ θ

θ θ θ

θ θ
θ

θ

−

− −

 
 

=

= − ⇒ =

  ′≈ 

=

′ ′= − + ⇒

 

⇒

≈  =

±

⇒

      (62.96,1179.54)=  
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Question 18  
 

(a) The SBC = the maximum value of the Log Likelihood function less the log of the sample 
size times one half the number of parameters 

 
The Neg Binomial has two parameters therefore 

𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑙𝑙(𝜃𝜃) −
2
2 𝑙𝑙𝑙𝑙400 = −424.5− 5.99 = 30.49 

(b)  

𝑇𝑇 = �
2𝑙𝑙𝑙𝑙(𝐿𝐿1) − 2𝑙𝑙𝑙𝑙(𝐿𝐿0)
2(−426.2 + 427.8)

3.2
 

 
If H1 is true then the test stat follows a Chi-Squared with 1 degree of freedom.   We have 𝑇𝑇 =

3.2 < 3.841 = 𝜒𝜒0.95
2  and therefore we do not reject H0.  

 
(c)  
 

 Poisson 
ZM 

Poisson Geometric 
ZM 

Geometric 
Neg 

Binomial 
ZM Neg 
Binomial 

𝝌𝝌𝟐𝟐 Statistic 6.07 3.29 14.53 1.26 5.15 1.14 
𝝌𝝌𝟐𝟐 Degrees 
of Freedom 2 1 3 1 1 1 

𝝌𝝌𝟐𝟐 P-value 
 

2.5%-5% 
 

5-10% <0.5% 10-90% 1-2.5% 10-90% 

 
(d) Possible answers 
• Graphing 
• Experience with similar populations 
• Likelihood ratio test between similar models 
• Simplicity to program/use/explain 

The Kolmogorov Smirnov test is meant for continuous distribution so not applicable 

 
(e) Possible choices 

• Geometric based on SBC, simplicity 
• ZM Neg Binomial based on likelihood, Chi-squared test 
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Question 19  
 

(a)  

𝑙𝑙(𝜇𝜇,𝜎𝜎) = −�𝑙𝑙𝑙𝑙�𝑥𝑥𝑗𝑗�
𝑛𝑛

𝑖𝑖=1

− 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 − 𝑛𝑛𝑛𝑛𝑛𝑛√2𝜋𝜋 −�
�𝑙𝑙𝑙𝑙�𝑥𝑥𝑗𝑗� − 𝜇𝜇�

2

2𝜎𝜎2

𝑛𝑛

𝑖𝑖=1

 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

=

⎩
⎪
⎨

⎪
⎧−

−2
2𝜎𝜎2

��𝑙𝑙𝑙𝑙�𝑥𝑥𝑗𝑗� − 𝜇𝜇�
𝑛𝑛

𝑖𝑖=1

1
𝜎𝜎2

��𝑙𝑙𝑙𝑙�𝑥𝑥𝑗𝑗�
𝑛𝑛

𝑗𝑗=1

− 𝑛𝑛𝑛𝑛�

= 0.∴ 𝜇̂𝜇 =
1
𝑛𝑛
�𝑙𝑙𝑙𝑙�𝑥𝑥𝑗𝑗�
𝑛𝑛

𝑗𝑗=1

 

(b)  

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= −
𝑛𝑛
𝜎𝜎

+
2
2
𝜎𝜎−3��𝑙𝑙𝑙𝑙�𝑥𝑥𝑗𝑗� − 𝜇𝜇�

2
𝑛𝑛

𝑖𝑖=1

= 0 

∴ 𝑛𝑛𝜎𝜎2 = ��𝑙𝑙𝑙𝑙�𝑥𝑥𝑗𝑗� − 𝜇𝜇�
2

𝑛𝑛

𝑖𝑖=1

 

(c)  

𝜕𝜕2𝑙𝑙
𝜕𝜕𝜇𝜇2

=
−𝑛𝑛
𝜎𝜎2

 

 

𝜕𝜕2𝑙𝑙
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

=
−2
𝜎𝜎3

��𝑙𝑙𝑙𝑙�𝑥𝑥𝑗𝑗�
𝑛𝑛

𝑗𝑗=1

− 𝑛𝑛𝑛𝑛� = 0 

 

𝜕𝜕2𝑙𝑙
𝜕𝜕𝜎𝜎2

=

⎩
⎪
⎨

⎪
⎧𝑛𝑛𝑛𝑛−2 − 3𝜎𝜎−4��𝑙𝑙𝑙𝑙�𝑥𝑥𝑗𝑗� − 𝜇𝜇�

2
𝑛𝑛

𝑖𝑖=1
𝑛𝑛𝑛𝑛−2 − 3𝜎𝜎−4(𝑛𝑛𝜎𝜎2)

−2𝑛𝑛𝑛𝑛−2

 

 

𝐶𝐶𝐶𝐶𝐶𝐶(𝜇𝜇,𝜎𝜎) = − ��

𝜕𝜕2𝑙𝑙
𝜕𝜕𝜇𝜇2

𝜕𝜕2𝑙𝑙
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

𝜕𝜕2𝑙𝑙
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

𝜕𝜕2𝑙𝑙
𝜕𝜕𝜎𝜎2

��

−1

= − �

−𝑛𝑛
𝜎𝜎2

0

0
−2𝑛𝑛
𝜎𝜎2

�

−1

= ��

𝜎𝜎2

𝑛𝑛
0

0
𝜎𝜎2

2𝑛𝑛

�� 
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(d)  

 

𝑔𝑔 = 𝑒𝑒𝑒𝑒𝑒𝑒 �𝜇𝜇 +
𝜎𝜎2

2
� 

 

𝜕𝜕𝜕𝜕 =

⎢
⎢
⎢
⎡
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕⎥
⎥
⎥
⎤

=

⎢
⎢
⎢
⎢
⎡ 𝑒𝑒𝑒𝑒𝑒𝑒 �𝜇𝜇 +

𝜎𝜎2

2
�

𝜎𝜎𝜎𝜎𝜎𝜎𝜎𝜎 �𝜇𝜇 +
𝜎𝜎2

2
�
⎥
⎥
⎥
⎥
⎤
 

 

𝑉𝑉𝑉𝑉𝑉𝑉(𝑔𝑔) =�

⎩
⎪⎪
⎨

⎪⎪
⎧
�𝑒𝑒𝑒𝑒𝑒𝑒 �𝜇𝜇 +

𝜎𝜎2

2
� 𝜎𝜎𝜎𝜎𝜎𝜎𝜎𝜎 �𝜇𝜇 +

𝜎𝜎2

2
�� ��

𝜎𝜎2

𝑛𝑛
0

0
𝜎𝜎2

2𝑛𝑛

��

⎢
⎢
⎢
⎢
⎡ 𝑒𝑒𝑒𝑒𝑒𝑒 �𝜇𝜇 +

𝜎𝜎2

2
�

𝜎𝜎𝜎𝜎𝜎𝜎𝜎𝜎 �𝜇𝜇 +
𝜎𝜎2

2
�
⎥
⎥
⎥
⎥
⎤

𝜎𝜎2𝑒𝑒𝑒𝑒𝑒𝑒[2𝜇𝜇 + 𝜎𝜎2]
𝑛𝑛

+
𝜎𝜎4𝑒𝑒𝑒𝑒𝑒𝑒[2𝜇𝜇 + 𝜎𝜎2]

2 𝑛𝑛
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Question 20  
 
The cumulative claim run-off triangle is: 

 Development Year (DY),  j 

Accident Year (AY) i 0 1 2 3 4 

      

0 1023 1155 1343 1386 1396 

1 1358 1708 1905 1930  

2 1283 1566 1738   

3 1503 2011    

4 1536 
    

ˆ
jf  1.2464 1.1258 1.0209 1.0072  

ˆ
jλ  1.4428 1.1576 1.0283 1.0072  

ˆ
jβ  0.6931 ? 0.9725 0.9928 1.000 

ˆ jγ  0.6931 ? 0.1086 0.0204 0.0072 

 

(a)  

 
0 1

32

1155 1708 1566 2011ˆ ˆ1.2464;
1023 1358 1283 1503 11

1343 1905 1738 1.1

1 2

258

1
55 1708 1566

396ˆ ˆ 16
4

.00738 1930 1.0209;
13 1 133 8905 6

f f

f f

+ +
= =

+
=

+ + +
= =

+ + + + +

==
+

=
 

2 2 1 1 2 0 0 13 3 3
ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ1.0072; 1.0283; 1.1576; 1.4428.f f f fλ λ λ λ λ λ λ= = × == == ×= × =  

1 1 1 0
1

.ˆ 0ˆ ˆˆˆ
1 0.8639; .1708β γ β β
λ

=−= = =  

 
(b)  The ultimate projected claims cost for the i-th accident year is ,4 ,4

ˆ ˆ
i i i iC C λ−= × , where 

,4i iC − is the latest available cumulative claims data for the i-th AY.  

The estimated outstanding claims for AY i  is ,4 ,4
ˆˆ

i i i iR C C −= −  

AY, i ,4
ˆ

iC  ˆ
iR  
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0 1396 0 

1 1944 14 

2 1787 49 

3 2328 317 

4 2216 680 

The total of the outstanding claims is ˆ 1060R = . 

 

(c)  

[ ] [ ]
( ) ( )

,

, ,

, ,

Assumption 1:   are independent wrt DY, .
Assumption 2:  There exist  such that  E Var

Assumption 3:  ,  are independent and identically distrib

|
| ( ) and | ( )

| |

i j i

i j i j i i j i j i

i j i l lj

j

X j
vX X

X X

θ

θ γ µ θ θγ γ θ

θ θ

= =

uted 
for all .i l≠

 

 
(d) Using the formula sheet, with 4I J= = ,  

2,

0
2,4

2

2

2

2 2

221( )
2

1283 283 1720.6931 1787 0.1708 1787 0.1086 1787
0.6931 0.1708 0.1086

5112

ˆˆ
ˆ

j
j

j j

X Ci s γ
γ=

 
= − 

 
       = − + − + −      

       
=

∑

 

 

0

0 1 3 2 2

3

4

4 4
2

1 4 0

0

ˆ ˆ ˆ1.00; 0.9929; 0.9725;
ˆ ˆ0.8639; 0.6931.

1396 1930 1536 1904.

( )

4.5224 4

4.5224

; .1583.i i
i i

m

m m m

C

ii m m

m m

β β β

β β

= =

= = = = = =

= = = =

=

+ + +
= =

= =∑ ∑


 

 

( )2 2 20.9929(1944 1904) 0

3

.6931(2216 1904) 41.00 1396 1904
ˆ

4.15834.5224 4.5224
373 1

(

4 5 10364
2

30

0

58

9

2)

3.6

a
 + − + − − =  

−  

=

−

=


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(iii) The estimator v̂  is an estimate of ( )iv θ , which is a measure of the variance of the estimated 

ultimate claims cost, based on the incremental claims information from AY i, DYj. This measures the 
uncertainty in the estimated ultimate claims based solely on the row (AY) information.  The estimator 

â is a measure of the variance of ( )iµ θ , which measures the variability across different AYs.  A small 

value for v̂  indicates that there is little variation in payment patterns within each AY. A small value 
for â indicates that the payments patterns are similar across AYs, so the information from all the AYs 
is valuable in predicting claims in a single AY. 

(iv) First, we calculate the Bühlmann-Straub estimate, then we iterate the credibility, using the mi 
weights, and using the Bühlmann-Straub estimate as the ‘prior’ mean. That is,  

                                ( )
( )

2
2

2

BS
2,4 2 2,4 2

BS2 BS
2,4 2 2,4 2 2,4

0.7671ˆ
ˆ

ˆ 1819

1788

ˆ ˆ 1
ˆ ˆ ˆ1

Z v

C

m

Z C
a

Z

C m C m C

m

µ

+

= + −

=

=

=

=−

=

+

 

(e) The Bornhuetter Ferguson estimate can be written as ( ),
ˆ ˆ ˆ ˆ1BF

i I i i J I i iC Cβ β µ− −+ −= . 

Typically, the iµ  estimate is determined using a loss ratio or other subjective method, but 
we can see that the Bühlmann-Straub estimate uses the same formula, but with iµ  set 
equal to the raw Bs estimator for AY i. 
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Question 21  
 

(a) For a random sample of 1 person the expected number of accidents is 
[ ]] 1 0.3 2 0.1 5 1.7[ ] [ | 0.6E N E E N θ × += × == + ×  

For 20 people the expected number is 1.7 34.20× =  
 

(b) Working in 000’s, and letting S denote the aggregate loss, we have: 

[ ] [ ]

[ ]

[ ] ( )

2 2 2

2

] [ | ]

[ | ] (1 2 ) 5

] 0.6 5 0.3 10 0.1 25 8.5
[ | ] [ ]

[ | ] 1.41
So, [ ] 8.5 1.41 9.91 [ ] 3.148.

[ ] [ |

[ |

1(0.6) 4(0.3) 25(0.1) 1.7

V V E S

V S E Y

E

E

S E V

S E Y

V S

E

V S

S

S

V

D

S

S

θ θ

θ θ θ θ

θ
θ θ θ

θ

+

 = = + =

+

=

+ +

 
⇒ = × + × × =

= =

⇒ = =

+ ⇒ =

−

= =

 

(c) Let ( )p θ  denote the prior distribution of θ , and let ( )π θ denote the posterior 
distribution.  Then   )(( ) ) (L pπ θ θ θ∝  where )(L θ  is the likelihood function.  Over a 
three year period, the distribution of the number of claims, given θ , is )Poisson(3θ , so 

)(L θ  is the probability of having 3 claims from the )Poisson(3θ  distribution.   

3 3

3 6

3 15

3( 1) (0.6) 0.13442
3!

6( 2) (0.3) 0.02677
3!

( 5) (0.1) 0.00002
3!

And, since ( 1) ( 2) ( 5) 1
we have ( 1) 0.833836; ( 2) 0.166057; ( 5) 0.000107.

15

e

e

e

π θ

π θ

π θ

π θ π θ π θ
π θ π θ π θ

−

−

−

= ∝ =

= ∝ =

= ∝ =

= + = + = =
= = = = = =

 

 
(d) 1 0.16606 2 0.00011 5 1.167[ ] 0.83384E N × × == + × +  

(e) 

2

( ) [ | ]
( ) [ | ]

[ ( )] and [ ( )],  based on the prior distribution,
so  [ ] 1.7

[ ( )] (4.3 1.7 ) 1.41

E N
v V N

E v E v
v E

a V

µ θ θ θ
θ θ θ

µ µ θ θ
µ θ

µ θ

= =
= =

= =
= = =

= = − =
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(f) (1 )

3 / 3 1; 0.71332

1.201

X Z
n

P

X
a

Z

Z vn

P

µ+ −

= = = =

⇒ =

=

+

 

(g) With three claims in 3 years, there is still more than a 16% probability that Adam is only 
a “fair” driver, with double the claim frequency of a “good” driver.  Underestimating 
this risk could be costly. 
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Question 22  
 

 
(a)  

 

 
 
 Total Outstanding Claims = 62211.457 
 

(b) (i)  5 1.0187 1.0046 1.0036 1.0007) 0.972895233ˆ 1/ (β × × ×= =  
(ii)   This parameter is the estimated proportion of the ultimate claims that are paid by 
year 5; in this case, just over 97%. 

 
(c)  

 

 
  

AY DY, j
i 0 1 2 3 4 5 6 7 8 9
0 10100 21056 26711 30594 32774 34094 35010 35153 35295 35320 0
1 10258 20337 26108 30312 32877 34053 34731 34932 35043 35067.82 24.82
2 11474 22742 29816 34581 36827 37826 38414 38569 38708.23 38735.65 166.65
3 11482 22675 29987 34063 36038 36841 37335 37507.25 37642.65 37669.31 334.31
4 11567 24416 31561 35351 37186 38383 39102.21 39282.62 39424.42 39452.35 1069.35
5 12755 25939 32694 36548 38618 39825.76 40572.00 40759.19 40906.33 40935.30 2317.30
6 13575 26229 32698 36707 39052.29 40273.63 41028.26 41217.56 41366.35 41395.65 4688.65
7 12736 24471 31704 36027.66 38329.55 39528.29 40268.95 40454.75 40600.78 40629.54 8925.54
8 12878 24721 31749.70 36079.60 38384.80 39585.27 40327.01 40513.06 40659.31 40688.11 15967.11
9 12621 25116.29 32257.39 36656.52 38998.58 40218.24 40971.84 41160.87 41309.46 41338.72 28717.72

1.9900 1.2843 1.1364 1.0639 1.0313 1.0187 1.0046 1.0036 1.0007 X X

Cumulative Claims Paid

𝒇𝒋�

𝑅𝑖𝑖�

f i,j j
i 0 1 2 3 4 5 6
0 2.0848 1.2686 1.1454 1.0713 1.0403 1.0269 1.0041
1 1.9826 1.2838 1.1610 1.0846 1.0358 1.0199 1.0058
2 1.9820 1.3111 1.1598 1.0649 1.0271 1.0155 1.0040
3 1.9748 1.3225 1.1359 1.0580 1.0223 1.0134
4 2.1108 1.2926 1.1201 1.0519 1.0322
5 2.0336 1.2604 1.1179 1.0566
6 1.9322 1.2466 1.1226
7 1.9214 1.2956

This question is an Excel question. Please see the ASTAM Sample Excel Question file for 
details. The content of the Excel solution file for this question is provided below for 
reference. 
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(d)  
 

 
 

(e) 
 

 
 

(f) The t-test for the Pearson correlation is suitable when the underlying random variables 
have the same variance. That is not part of the chain ladder assumptions, and indeed, is 
unlikely to be true. 

 
 

DY, j 0-1 1-2 2-3 3-4 4-5 5-6
Correlation -0.0812 0.4268 0.8191 0.5444 0.9606 -0.1063

DY, j 0-1 1-2 2-3 3-4 4-5 5-6
Test Statistic -0.1995 1.0552 2.8555 1.1241 4.8858 -0.1070

df 6 5 4 3 2 1
p-value 0.8485 0.3396 0.0461 0.3428 0.0394 0.9322


	Question 1
	Question 2
	Question 3
	Question 4
	Question 5
	Question 6
	Question 7
	Question 8
	Question 9
	Question 10
	Question 11
	Question 12
	Question 13
	Question 14
	Question 15
	Question 16
	Question 17
	Question 18
	Question 19
	Question 20
	Question 21
	Question 22

